The answer is 42 grams of NaF are there in 1 mole.
<h3>
What is a mole ?</h3>
A mole is defined as 6.022 × 10²³ atoms, molecules, ions, or other chemical units.
and the molar mass of a substance is defined as the mass of 1 mole of that substance, expressed in grams per mole.
It is equal to the mass of 6.022 × 10²³ atoms, molecules, or formula units of that substance.
Molar Mass , i.e. mass of 1 mole of NaF is sum of molar mass of Na and F
23 + 19
42 grams
Therefore 42 grams of NaF Sodium-fluoride are there in 1 mole.
To know more about mole
brainly.com/question/26416088
#SPJ1
CH3 is the empirical formula for the compound.
A sample of a compound is determined to have 1.17g of Carbon and 0.287 g of hydrogen.
The number of atom or moles in the compound is
1.17 g C X 1 mol of C / 12.011 g C = 0.097411 mol of C.
0.287 g H x 1 mol of H / 1 g H = 0.28474 mol H.
This compound contains 0.097411 mol of carbon and 0.28474 mol of Hydrogen.
So we can represent the compound with the formula C0.974H0.284.
Subscripts in formulas can be made into whole numbers by multiplying the smaller subscript by the larger subscript.
we can divide 0.284 by 0.0974.
0.284 / 0.0974 = 3.
So here, Carbon is one and hydrogen is 3.
We can write the above formula as a CH3.
Hence the empirical formula for the sample compound is CH3.
For a detailed study of the empirical formula refer given link brainly.com/question/13058832.
#SPJ1.
At l = 3, ml =+3,+2,+1,0,-1,-2,-3
What are quantum numbers?
- Quantum numbers are used to describe where around a nucleus a particular electron can be found.
- In any given atom, each electron can be described by four quantum numbers.
- These are n,l,m1,ms
- The values that each number can be are based on a set of rules.
What is a magnetic quantum number ?
- It describes the orientation of the orbitals.
- It is represented as ml.
- The value of this quantum number ranges from (-l to +l).
- When l = 2, the value of will be -2, -1, 0, +1, +2.
To know more about magnetic quantum numbers, refer:
brainly.com/question/14650566
#SPJ4