The statement that is true is that B. Atoms always remain intact during chemical reactions.
Atoms simply mean the <u>basic units of matter.</u> They're the defining structure of an element. Atom is also known as the smallest unit of matter.
It should be noted that atoms always remain intact during chemical reactions. They cannot be added and removed when there are <em>chemical reactions.</em>
Read related link on:
brainly.com/question/19338615
Answer :
121.5 <span>
μCi
Explanation : We have Ce-141 half life given as 32.5 days so if the activity is 3.8 </span><span>μci after 162.5 days of time elapsed we have to find the initial activity.
We can use this formula;
</span>

3.8 /

=

((0.693 X 162.5 ) / 32.5) = 121.5
<span>
On solving we get, The initial activity as 121.5 </span>μci
(a) One form of the Clausius-Clapeyron equation is
ln(P₂/P₁) = (ΔHv/R) * (1/T₁ - 1/T₂); where in this case:
Solving for ΔHv:
- ΔHv = R * ln(P₂/P₁) / (1/T₁ - 1/T₂)
- ΔHv = 8.31 J/molK * ln(5.3/1.3) / (1/358.96 - 1/392.46)
(b) <em>Normal boiling point means</em> that P = 1 atm = 101.325 kPa. We use the same formula, using the same values for P₁ and T₁, and replacing P₂ with atmosferic pressure, <u>solving for T₂</u>:
- ln(P₂/P₁) = (ΔHv/R) * (1/T₁ - 1/T₂)
- 1/T₂ = 1/T₁ - [ ln(P₂/P₁) / (ΔHv/R) ]
- 1/T₂ = 1/358.96 K - [ ln(101.325/1.3) / (49111.12/8.31) ]
(c)<em> The enthalpy of vaporization</em> was calculated in part (a), and it does not vary depending on temperature, meaning <u>that at the boiling point the enthalpy of vaporization ΔHv is still 49111.12 J/molK</u>.
Answer:
1 molecule of oxygen has 2 atoms.
So 2,25 molecules of oxygen have 2 x 2,25 atoms.
2 x 2,25 = 4,5 atoms
There are 4,5 atoms in 2,25 molecules oxygen.