Answer:
Hello, how's your day going?
if humanity came together and made a base on the moon, it would be revolutionary. The point of a base on the moon would have multiple purposes. for example, some think that the moon contains valuable metals such as iron and titanium. a base would serve as a place for workers harvesting metals to rest. Obviously or not most of the iron harvesting would be done automatically by robots and such.
If such a base were constructed on the moon, it would be the begining of people living on other worlds and would be a great start for a base on Mars.
Hope it helped
Spiky Bob
Answer:
Wash your hand when you are done using the restroom because you could spread germs if not.
Don't come to school if you are sick because then you will get others sick.
Explanation:
Answer:
Total energy saving will be 0.8 KWH
Explanation:
We have given there are 50 long light bulbs of power 100 W so total power of 50 bulb = 100×50 = 5000 W = 5 KW
30 bulbs are of power 60 W
So total power of 30 bulbs = 30×60 = 1800 W = 1.8 KW
Total power of 80 bulbs = 1.8+5 = 6.8 KW
Total time = 3 hour
We know that energy 
Now power of each CFL bulb = 25 W
So power of 80 bulbs = 80×25 = 2000 W = 2 KW
Energy of 80 bulbs = 2×3 = 6 KWH
So total energy saving = 6.8-6 = 0.8 KWH
Answer:
v = 7.67 m/s for L= 1m
Explanation:
Let's use the conservation of mechanical energy, at the highest point and the lowest point
Initial. Vertical ruler
Em₀ = mg h
Final. Just before touching the floor
= K = ½ I w²
Em₀ = 
m g h = ½ I w²
The moment of inertia of a ruler that turns on one end is
I = 1/3 m L²
Let's replace
m g h = ½ (1/3 m L²) w²2
g h = 1/6 L² w²
They ask for the speed of the end so the height h is equal to the length of the ruler
g L = 1/6 L² w²
The linear and angular variables are related
v = w r
w = v / r
In this case the point of interest a in strangers r = L
g L = 1/6 L² v² / L²
v = √ 6 g L
Let's calculate
Assume that the length of the meter is L = 1 m
v = √ (6 9.8 1)
v = 7.67 m/s
ANSWER
0s to 3s
EXPLANATION
To find the time interval where the object was traveling more quickly, we have to find the velocity of the object during each interval.
From a position-time graph, we can obtain the velocity of the object from the slope of the graph in each interval. To find those slopes, we just have to divide the vertical difference by the time interval.
The interval from 0s to 3s:

The interval from 3s to 5s and the interval from 7s to 8s have a horizontal line, so the slope is zero and therefore the velocity is zero - meaning that the object was not moving during these periods.
The interval from 5s to 7s,

And the interval from 8s to 12s,

Two of these three velocities are negative. Negative velocity indicates that the object is moving backward.
From these velocities, the greatest one, in absolute value, is the one between 0s to 3s. During this interval, the object is moving backward but at the greatest velocity.