<span>The law of conservation of matter and energy relates to the cycles in nature, and by that it is also applied to rocks and other materials. All of the rock in the Earth is recycled and accounted for during the rock cycle. Rocks experience physical change, the composition of the material stays the same, it may just change how it looks and chemical changes occur (the suubstance undergoes a chemical reaction that changes the actual makeup of the substance).</span>
I believe the answer is a. Because the formula of kinetic energy is 1/2(m)•(v^2)
the father has to sit 0.5meter away from the kid because he is a 3/4 heavier that the kid
B) 14.0 N
The way to solve this problem is to determine the kinetic energy the box had before and after the rough patch of floor. The equation for kinetic energy is:
E = 0.5 M V^2
where
E = Energy
M = Mass
V = velocity
Substituting the known values, let's calculate the before and after energy.
Before:
E = 0.5 M V^2
E = 0.5 13.5kg (2.25 m/s)^2
E = 6.75 kg 5.0625 m^2/s^2
E = 34.17188 kg*m^2/s^2 = 34.17188 joules
After:
E = 0.5 M V^2
E = 0.5 13.5kg (1.2 m/s)^2
E = 6.75 kg 1.44 m^2/s^2
E = 9.72 kg*m^2/s^2 = 9.72 Joules
So the box lost 34.17188 J - 9.72 J = 24.451875 J of energy over a distance of 1.75 meters. Let's calculate the loss per meter by dividing the loss by the distance.
24.451875 J / 1.75 m = 13.9725 J/m = 13.9725 N
Rounding to 1 decimal place gives 14.0 N which matches option "B".