Answer:
The optimum wavelength = (8.863 × 10⁻⁷) m = 886.3 nm
Explanation:
The light that will generate the photovoltaic energy of 1.4 eV will must have that amount of energy
Energy of light waves is given as
E = hf
h = Planck's constant = (6.626 × 10⁻³⁴) J.s
f = Frequency of the light
The frequency is then further given as
f = (c/λ)
c = speed of light = (3.0 × 10⁸) m/s
λ = wavelength of the light = ?
E = (hc/λ)
λ = (hc/E)
Energy = E = 1.4 eV = 1.4 × 1.602 × 10⁻¹⁹ = (2.2428 × 10⁻¹⁹) J
λ = (6.626 × 10⁻³⁴ × 3.0 × 10⁸)/(2.2428 × 10⁻¹⁹)
λ = (8.863 × 10⁻⁷) m = 886 nm
Hope this Helps!!!
.........................|||||||..............................
Answers:
a) 
b) 
Explanation:
a) Since we are told the satellites circle the space station at constant speed, we can assume they follow a uniform circular motion and their tangential speeds
are given by:
(1)
Where:
is the angular frequency
is the radius of the orbit of each satellite
is the period of the orbit of each satellite
Isolating
:
(2)
Applying this equation to each satellite:
(3)
(4)
(5)
(6)
(7)
(8)
Ordering this periods from largest to smallest:

b) Acceleration
is defined as the variation of velocity in time:
(9)
Applying this equation to each satellite:
(10)
(11)
(12)
(13)
(14)
(15)
Ordering this acceerations from largest to smallest:

Answer:
Subduction, Trench, Mantle
Explanation: