Answer:
Time of flight A is greatest
Explanation:
Let u₁ , u₂, u₃ be their initial velocity and θ₁ , θ₂ and θ₃ be their angle of projection. They all achieve a common highest height of H.
So
H = u₁² sin²θ₁ /2g
H = u₂² sin²θ₂ /2g
H = u₃² sin²θ₃ /2g
On the basis of these equation we can write
u₁ sinθ₁ =u₂ sinθ₂=u₃ sinθ₃
For maximum range we can write
D = u₁² sin2θ₁ /g
1.5 D = u₂² sin2θ₂ / g
2 D =u₃² sin2θ₃ / g
1.5 D / D = u₂² sin2θ₂ /u₁² sin2θ₁
1.5 = u₂ cosθ₂ /u₁ cosθ₁ ( since , u₁ sinθ₁ =u₂ sinθ₂ )
u₂ cosθ₂ >u₁ cosθ₁
u₂ sinθ₂ < u₁ sinθ₁
2u₂ sinθ₂ / g < 2u₁ sinθ₁ /g
Time of flight B < Time of flight A
Similarly we can prove
Time of flight C < Time of flight B
Hence Time of flight A is greatest .
Answer:
option b
Explanation:
from the given formula, s=d/t
make t the subject of the formula we have
t=d/s
5/100
0.5
''Energy is destroyed because animals are higher levels do not need as much energy'' is not the valid reason.
<h3>What is respiration?</h3>
Respiration is the cellular process of releasing energy from food. Some of the energy released is used to produce ATP. 90 percent of energy is lost as heat energy whereas 10 percent energy is transferred to other trophic levels.
So we can conclude that ''Energy is destroyed because animals are higher levels do not need as much energy'' is not the valid reason.
Learn more about energy here: brainly.com/question/19666326
Answer:
The following options are true based on the properties of electric field;
a) Electric field lines near positive point charges radiate outward.
b) The electric force acting on a point charge is proportional to the magnitude of the point charge.
d) In a uniform electric field, the field lines are straight, parallel, and uniformly spaced.
Explanation:
From option b) From coulomb's law F = Kq1q2r/r2
To calcculate the braking force of the car moving, we use Newton's second law of motion which relates the acceleration and the force of an object moving. The force of an object moving is directly proportional to its acceleration and the proportionality constant is the mass of the object. It is expressed as:
Force = ma
Acceleration is the rate of change of the velocity of a moving object. We calculate acceleration from the velocity and the time given above.
a = (10 m/s) / 5 s = 2 m/s^2
So,
Force = ma
Force = 1000 kg ( 2 m/s^2 )
Force = 2000 kg m/s^2 or 2000 N