Answer: P=130
2W +2L=130
2(31) + 2(34)=130
W=31
L=34
Step-by-step explanation:
P=130
2L + 2W
W=L-3
Add all of the sides together to get perimeter.
2(L-3) + 2L=130
2L-6+2L=130
4L-6+6=130+6
4L=136
4L/4=136/4
L=34
W=L-3
W=34-3
W=31
Answer:4
Step-by-step explanation:
Option C:
![$\frac{\sqrt[3]{100 x}}{5}=\sqrt[3]{\frac{4 x}{5}}](https://tex.z-dn.net/?f=%24%5Cfrac%7B%5Csqrt%5B3%5D%7B100%20x%7D%7D%7B5%7D%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B4%20x%7D%7B5%7D%7D)
Solution:
Given expression is
![$\sqrt[3]{\frac{4 x}{5}}](https://tex.z-dn.net/?f=%24%5Csqrt%5B3%5D%7B%5Cfrac%7B4%20x%7D%7B5%7D%7D)
Note: ![\sqrt[3]{125}=\sqrt[3]{{5^3}} = 5](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B125%7D%3D%5Csqrt%5B3%5D%7B%7B5%5E3%7D%7D%20%20%3D%205)
To find the correct expression for the above simplified expression.
Option A: ![\frac{\sqrt[3]{4 x}}{5}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B4%20x%7D%7D%7B5%7D)
5 can be written as
.
![$\frac{\sqrt[3]{4 x}}{5}=\frac{\sqrt[3]{4 x}}{\sqrt[3]{125} }](https://tex.z-dn.net/?f=%24%5Cfrac%7B%5Csqrt%5B3%5D%7B4%20x%7D%7D%7B5%7D%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B4%20x%7D%7D%7B%5Csqrt%5B3%5D%7B125%7D%20%7D)
![$=\sqrt[3]{\frac{4x}{125} }](https://tex.z-dn.net/?f=%24%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B4x%7D%7B125%7D%20%7D)
It is not the given simplified expression.
Option B: ![\frac{\sqrt[3]{20 x}}{5}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B20%20x%7D%7D%7B5%7D)
![$\frac{\sqrt[3]{20 x}}{5}=\frac{\sqrt[3]{20 x}}{\sqrt[3]{125} }](https://tex.z-dn.net/?f=%24%5Cfrac%7B%5Csqrt%5B3%5D%7B20%20x%7D%7D%7B5%7D%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B20%20x%7D%7D%7B%5Csqrt%5B3%5D%7B125%7D%20%7D)
![$=\sqrt[3]{\frac{20x}{125} }](https://tex.z-dn.net/?f=%24%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B20x%7D%7B125%7D%20%7D)
Cancel the common factor in both numerator and denominator.
![$=\sqrt[3]{\frac{4x}{25} }](https://tex.z-dn.net/?f=%24%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B4x%7D%7B25%7D%20%7D)
It is not the given simplified expression.
Option C: ![\frac{\sqrt[3]{100 x}}{5}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B100%20x%7D%7D%7B5%7D)
![$\frac{\sqrt[3]{100 x}}{5}=\frac{\sqrt[3]{100 x}}{\sqrt[3]{125} }](https://tex.z-dn.net/?f=%24%5Cfrac%7B%5Csqrt%5B3%5D%7B100%20x%7D%7D%7B5%7D%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B100%20x%7D%7D%7B%5Csqrt%5B3%5D%7B125%7D%20%7D)
![$=\sqrt[3]{\frac{100x}{125} }](https://tex.z-dn.net/?f=%24%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B100x%7D%7B125%7D%20%7D)
Cancel the common factor in both numerator and denominator.
![$=\sqrt[3]{\frac{4 x}{5}}](https://tex.z-dn.net/?f=%24%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B4%20x%7D%7B5%7D%7D)
It is the given simplified expression.
Option D: ![\frac{\sqrt[3]{100 x}}{125}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B100%20x%7D%7D%7B125%7D)
![$\frac{\sqrt[3]{100 x}}{125}=\frac{\sqrt[3]{100 x}}{5^3}](https://tex.z-dn.net/?f=%24%5Cfrac%7B%5Csqrt%5B3%5D%7B100%20x%7D%7D%7B125%7D%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B100%20x%7D%7D%7B5%5E3%7D)
It is not the given simplified expression.
Hence Option C is the correct answer.
![$\frac{\sqrt[3]{100 x}}{5}=\sqrt[3]{\frac{4 x}{5}}](https://tex.z-dn.net/?f=%24%5Cfrac%7B%5Csqrt%5B3%5D%7B100%20x%7D%7D%7B5%7D%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B4%20x%7D%7B5%7D%7D)
The graph that represents the inequality has been shown in the attachment.
<h3>How to solve for the graph</h3>
We have these equations
y ≤ −3x + 1
y ≤ x + 3
We remove the inequality sign from both of these equations
y = −3x + 1
y = x + 3
−3x + 1 = x + 3
such that
x = -0.5
we use this value for x in any of the equations
x + 3 = -0.5 + 3
= 2.5
the point of intersection is at 2.5, -0.5
we test for the origin. 0,0
3x + 1
= 3*0 + 1
= 1
for x + 3
0+3 = 3
This is 0≤1 and 0≤3
Hence the graph should be shaded to the origin.
Read more on a graph here: brainly.com/question/14030149
#SPJ1