Answer
given,
Length of the string, L = 2 m
speed of the wave , v = 50 m/s
string is stretched between two string
For the waves the nodes must be between the strings
the wavelength is given by

where n is the number of antinodes; n = 1,2,3,...
the frequency expression is given by

now, wavelength calculation
n = 1

λ₁ = 4 m
n = 2

λ₂ = 2 m
n =3

λ₃ = 1.333 m
now, frequency calculation
n = 1


f₁ = 12.5 Hz
n = 2


f₂= 25 Hz
n = 3


f₃ = 37.5 Hz
The voltage in the extension cord is 30 V.
The problem above can be solved using ohm's law
⇒ Formula:
V = IR.................. Equation 1
⇒ Where:
- V = Voltage in the extension cord
- I = Current flowing through the extension cord
- R = Resistance of the extension cord.
From the question, I think there was a slight error in the value of the current given it suppose to be 500 A, and not 5.00 A
⇒ Given:
⇒ Substitute these values into equation 1
Hence the voltage in the extension cord is 30 V
Learn more about voltage here: brainly.com/question/4429782
Most stars take millions of years to die. When a star like the Sun has burned all of its hydrogen fuel, it expands to become a red giant then when it fully runs out it then dies
Period and frequency are mutual reciprocals.
Period = 1 / frequency .
Frequency = 1 / period
(Frequency) x (Period) = 1
Answer:
#_electrons = 2 10¹⁰ electrons
Explanation:
For this exercise we can use a direct rule of three proportions rule. If an electron has a charge of 1.6 10⁻¹⁹ C how many electrons have a charge of 3.2 10⁻⁹ C
#_electrons = 3.2 10⁻⁹ (
)
#_electrons = 2 10¹⁰ electrons