F = ma
6.25 N = 0.4 kg · a
a = (6.25/0.4) m/s² since N=kg·m/s²
a = 15.625 m/s²
The answer is c) 15.6 m/s²
(Note that the mass of the soccer player is irrelevant.)
Strength of induced current increased when strength of magnetic field increases. It will also increase when the number of turns are increased or if the speed of conductor increases
Weight = (mass) x (gravity)
Weight = (8 x 10⁻⁴ kg) x (10 N/kg) = 0.008 Newton
The velocity of tennis racket after collision is 14.96m/s
<u>Explanation:</u>
Given-
Mass, m = 0.311kg
u1 = 30.3m/s
m2 = 0.057kg
u2 = 19.2m/s
Since m2 is moving in opposite direction, u2 = -19.2m/s
Velocity of m1 after collision = ?
Let the velocity of m1 after collision be v
After collision the momentum is conserved.
Therefore,
m1u1 - m2u2 = m1v1 + m2v2


Therefore, the velocity of tennis racket after collision is 14.96m/s
Answer:
60 meters
Explanation:
If you are going 3 meters in a second, and you are traveling for 20 seconds, you have to multiply
3meters/second*20seconds
cross out the seconds and you have
3 meters*20
60 meters