A. How much work is being done to hold the beam in place?
Work is the product of Force and Displacement. Since there
is no Displacement involved in just holding the beam in place, hence the work
is zero.
B. How much work was done to lift the beam?
In this case, force is simply equal to weight or mass
times gravity. Hence the work is:
Work = weight * displacement
Work = 500 lbf * 100 ft
Work = 50,000 lbf * ft
C. How much work would it take if the steel beam were
raised from 100 ft to 200ft?
The displacement is still 100 ft since 200 – 100 = 100 ft,
hence the work done is still similar in B which is:
<span>Work = 50,000 lbf * ft</span>
Answer:
22 N upward
Explanation:
From the question,
Applying newton's second law of motion
F = m(v-u)/t....................... Equation 1
Where F = Average force exerted by the ground on the ball, m = mass of the baseball, v = final velocity, u = initial velocity, t = time of contact
Note: Let upward be negative and downward be positive
Given: m = 0.14 kg, v = -1.00 m/s, u = 1.2 m/s, t = 0.014 s
Substitute into equation 1
F = 0.14(-1-1.2)/0.014
F = 0.14(-2.2)/0.014
F = 10(-2.2)
F = -22 N
Note the negative sign shows that the force act upward
Wavelength = 600 nm = 600 × 10^(-9)
speed of light = c = 3 × 10^8
planck constant = h = 6.63 × 10^(-34)
energy of photon = hc/wavelength
= 6.63 × 10^(-34) × 3 × 10^8/600 × 10^(-9)
= 1.9 × 10^(-25)/6 × 10^(-7)
= 0.31 × 10^(-16)
= 3.1 × 10^(-17)
It is an extension of the grounding system