1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
viva [34]
3 years ago
5

What was your electric potential relative to a metal pipe if a spark jumped 1.1 cm through dry air from your finger to the pipe?

Physics
2 answers:
aleksley [76]3 years ago
7 0

Answer:

Electric potential = V = 33 KV

Explanation:

The breakdown is an electric stress phenomenon. The value of electric field at which breakdown of dry air occur is 3 × 10^6 V/m. So,

E = 3 × 10^6 V/m

d = 1.1 cm = 1.1 × 10^-2 m  

We know that:

E = V/d  

V = Ed  

V = (3 × 10^6)( 1.1 × 10^-2)

V = 33000 V  

V = 33 KV

romanna [79]3 years ago
6 0
The electric field is given by volts/distance: E= \frac{V}{d}.  The breakdown voltage of dry air is about 3x10^6V/m.  So solving for V we get
V=Ed
or V=(3e6V/m)(0.011m)=33,000V
You might be interested in
A device for measuring atmospheric pressure is a _____. thermometer manometer barometer seismometer
vodomira [7]

A device used to measure atmospheric pressure is a barometer.

8 0
3 years ago
Read 2 more answers
In tenis does your knees have to be slightly flexed for both the forehand and backhand?
Elena L [17]

Answer:

yes

Explanation:

8 0
3 years ago
Water is discharged from a pipeline at a velocity v (in ft/sec) given by v = 1306p(1/2), where p is the pressure (in psi). If th
shepuryov [24]

Answer:

a=38.5 ft/sec^{2}

Explanation:

Note that acceleration is the rate change of velocity i.e

acceleration=\frac{change in velocity}{change in time}\\a=\frac{dv}{dt} \\.

Since the velocity is giving as a variable dependent on the pressure, we have to differentiate implicitly both side with respect to time,i.e

\frac{dv}{dt}=1306*(1/2)p^{-1/2}\frac{dp}{dt} \\

if we substitute value for the pressure as giving in the question and also since the rate change of pressure is 0.354psi/sec, we have

a=653*0.1667*0.354\\

a=\frac{dv}{dt}=653(36)^{-1/2}*0.354\\  a=38.5 ft/sec^{2}

3 0
3 years ago
1.) an object moves along the x axis, subject to the potential energy shown. The object has a mass of 1.1kg and starts at rest a
MrRa [10]
If I'm not wrong #1 should be C
4 0
3 years ago
A man is standing on a weighing machine on a ship which is bobbing up and down with simple harmonic motion of period T=15.0s.Ass
STALIN [3.7K]

Well, first of all, one who is sufficiently educated to deal with solving
this exercise is also sufficiently well informed to know that a weighing
machine, or "scale", should not be calibrated in units of "kg" ... a unit
of mass, not force.  We know that the man's mass doesn't change,
and the spectre of a readout in kg that is oscillating is totally bogus.

If the mass of the man standing on the weighing machine is 60kg, then
on level, dry land on Earth, or on the deck of a ship in calm seas on Earth,
the weighing machine will display his weight as  588 newtons  or as 
132.3 pounds.  That's also the reading as the deck of the ship executes
simple harmonic motion, at the points where the vertical acceleration is zero.

If the deck of the ship is bobbing vertically in simple harmonic motion with
amplitude of M and period of 15 sec, then its vertical position is 

                                     y(t) = y₀ + M sin(2π t/15) .

The vertical speed of the deck is     y'(t) = M (2π/15) cos(2π t/15)

and its vertical acceleration is          y''(t) = - (2πM/15) (2π/15) sin(2π t/15)

                                                                = - (4 π² M / 15²)  sin(2π t/15)

                                                                = - 0.1755 M sin(2π t/15) .

There's the important number ... the  0.1755 M.
That's the peak acceleration.
From here, the problem is a piece-o-cake.

The net vertical force on the intrepid sailor ... the guy standing on the
bathroom scale out on the deck of the ship that's "bobbing" on the
high seas ... is (the force of gravity) + (the force causing him to 'bob'
harmonically with peak acceleration of  0.1755 x amplitude).

At the instant of peak acceleration, the weighing machine thinks that
the load upon it is a mass of  65kg, when in reality it's only  60kg.
The weight of 60kg = 588 newtons.
The weight of 65kg = 637 newtons.
The scale has to push on him with an extra (637 - 588) = 49 newtons
in order to accelerate him faster than gravity.

Now I'm going to wave my hands in the air a bit:

Apparent weight = (apparent mass) x (real acceleration of gravity)

(Apparent mass) = (65/60) = 1.08333 x real mass.

Apparent 'gravity' = 1.08333 x real acceleration of gravity.

The increase ... the 0.08333 ... is the 'extra' acceleration that's due to
the bobbing of the deck.

                        0.08333 G  =  0.1755 M

The 'M' is what we need to find.

Divide each side by  0.1755 :          M = (0.08333 / 0.1755) G

'G' = 9.0 m/s²
                                       M = (0.08333 / 0.1755) (9.8) =  4.65 meters .

That result fills me with an overwhelming sense of no-confidence.
But I'm in my office, supposedly working, so I must leave it to others
to analyze my work and point out its many flaws.
In any case, my conscience is clear ... I do feel that I've put in a good
5-points-worth of work on this problem, even if the answer is wrong .

8 0
3 years ago
Other questions:
  • In a transverse wave that travels through a medium, the molecules of the medium vibrate
    12·1 answer
  • Calculate the moment of inertia of a skater given the following information.
    10·1 answer
  • A tow can pull a car out of a ditch in 7.5 seconds. How many work is done if the truck has power of 5500 watts?
    6·1 answer
  • The symbol used for magnetic field is:
    13·1 answer
  • The tip of a pinwheel is 0.24 m from the center. The pinwheel spins 5 times each second. What is the tangential speed of the tip
    5·2 answers
  • A 55.0 kg runner who weighs 539.0 N is accelerating at 3.2 m/s2. After 2
    5·2 answers
  • **
    10·1 answer
  • Greyhounds are among the fastest dogs on earth. On average, what is the fastest speed they can run?.
    6·1 answer
  • The student lets the toy car roll down the slope. describe how the student could find, by experiment the speed of the toy car at
    5·1 answer
  • A 3,220 lb car enters an S-curve at A with a speed of 60 mi/hr with brakes applied to reduce the speed to 45 mi/hr at a uniform
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!