The car accelerated at around ~5.7 m/s
Answer:
a) Wavelength of the ultrasound wave = 0.0143 m <<< 3.5m, hence its ability is not limited by the ultrasound's wavelength.
b) Minimum time difference between the oscillations = Period of oscillation = 0.00952 ms
Explanation:
The frequency of the ultrasound wave = 105 KHz = 105000 Hz. The speed of ultrasound waves in water ≈ 1500 m/s. Wavelength = ?
v = fλ
λ = v/f = 1500/105000 = 0.0143 m <<< 3.5m
This value, 0.0143m is way less than the 3.5m presented in the question, hence, this ability is not limited by the ultrasound's wavelength.
b) Minimum time difference between the oscillations = The period of oscillation = 1/f = 1/105000 = 0.00000952s = 0.00952 ms
Hope this helps!
Answer:
The average number of calories needed daily represents the average quantity of calories eliminated by human body due to metabolism and must be compensated by eating and drinking.
The amount of calories contained in the food we eat every day must represent the amount of calories eliminated by the body in that time to have a steady weight.
Explanation:
The average number of calories needed daily represents the average quantity of calories eliminated by human body due to metabolism and must be compensated by eating and drinking. If total quantity of calories in the food we consume every day is higher that the average number of calories needed daily, then weight increases by fat accumulation.
Explanation :
It is given that,
Diameter of the coil, d = 20 cm = 0.2 m
Radius of the coil, r = 0.1 m
Number of turns, N = 3000
Induced EMF, 
Magnitude of Earth's field, 
We need to find the angular frequency with which it is rotated. The induced emf due to rotation is given by :




So, the angular frequency with which the loop is rotated is 159.15 rad/s. Hence, this is the required solution.
Answer:

Explanation:
We know that speed is given by dividing distance by time or multiplying length and frequency. The speed of the father will be given by Lf where L is the length of the father’s leg ad f is the frequency.
We know that frequency of simple pendulum follows that 
Now, the speed of the father will be
while for the child the speed will be 
The ratio of the father’s speed to the child’s speed will be
