Answer:
2AlCl3 + Ca3N2 - 2AlN+ 3CaCl2
Answer:
4. Principal and Azimuthal (subsidiary) quantum number
5.Principal, Azimuthal (subsidiary), and magnetic quantum number
6. 10 electrons
7. 32 electrons
8. 36 electrons
Explanation:
4. Principal and Azimuthal (subsidiary) quantum number because in 4d, 4 represent principal quantum number and d- represents azimuthal quantum number (having l- value as 3)
5.Principal, Azimuthal (subsidiary), and magnetic quantum number are the first three because 2 stands for principal, s-for azimuthal (l=0) and magnetic quantum number for s- orbital= 0
6. 10 electrons, because for sublevel with l= 3, is a d-sub-level, and d- can take 10-electrons
7. 32 electrons, using the relationship 2×n^2 for the maximum number of electrons in a shell,
,n= 4 , hence 2×4^2= 32
8. 36 electrons, because n=4 and n= 3 can have the maximum configuration of [Ar]4s^2 3d^10 4p^6
This will sum up to 36- electrons, since Argon has 18 -electrons.
18+2+10+6=36 electrons
Mass percentage of a solution is the amount of solute present in 100 g of the solution.
Given data:
Mass of solute H2SO4 = 571.3 g
Volume of the solution = 1 lit = 1000 ml
Density of solution = 1.329 g/cm3 = 1.329 g/ml
Calculations:
Mass of the given volume of solution = 1.329 g * 1000 ml/1 ml = 1329 g
Therefore we have:
571.3 g of H2SO4 in 1329 g of the solution
Hence, the amount of H2SO4 in 100 g of solution= 571.3 *100/1329 = 42.987
Mass percentage of H2SO4 (%w/w) is 42.99 %
Answer:
V₂ = 1.86 L
Explanation:
Given data:
Initial volume = 4.30 L
Initial pressure = 1 atm
Initial temperature = 273.15 K
Final temperature = 302 K
Final volume = ?
Final pressure = 2.56 atm
Solution:
According to general gas equation:
P₁V₁/T₁ = P₂V₂/T₂
V₂ = P₁V₁T₂
/T₁ P₂
V₂ = 1 atm ×4.30 L × 302 K / 273.15 K × 2.56 atm
V₂ = 1298.6 atm.L.K / 699.26 K.atm
V₂ = 1.86 L