<u>Answer:</u> The concentration of hydrogen gas at equilibrium is 0.0275 M
<u>Explanation:</u>
Molarity is calculated by using the equation:

Moles of HI = 0.550 moles
Volume of container = 2.00 L

For the given chemical equation:

<u>Initial:</u> 0.275
<u>At eqllm:</u> 0.275-2x x x
The expression of
for above equation follows:
![K_c=\frac{[H_2][I_2]}{[HI]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2%5D%5BI_2%5D%7D%7B%5BHI%5D%5E2%7D)
We are given:

Putting values in above expression, we get:

Neglecting the negative value of 'x' because concentration cannot be negative
So, equilibrium concentration of hydrogen gas = x = 0.0275 M
Hence, the concentration of hydrogen gas at equilibrium is 0.0275 M
Epsilon-delta would be the green letter that is used in the precision definition of a limit. (ε, δ).
The prefix milli means thousand so the correct conversion factor is 1000mg/g
I would expect fine salt to fully dissolve by the end of 45 minutes. Since the other types of salt are not fine and tiny, they would take longer to dissolve
Let x represent the total distance around the track
Jason's distance: (5/7)x
Sara ran (4/5) of Jason's distance,
so she ran (4/5)*(5/7)x = (4/7)x
Sara ran 4/7 of the total distance