Answer:
10.64
Explanation:
Let's consider the basic reaction of cyclohexamine, C₆H₁₁NH₂.
C₆H₁₁NH₂(aq) + H₂O(l) ⇄ C₆H₁₁NH₃⁺(aq) + OH⁻ pKb = 3.36
C₆H₁₁NH₃⁺ is its conjugate acid, since it donates H⁺ to form C₆H₁₁NH₂. C₆H₁₁NH₃⁺ acid reaction is as follows:
C₆H₁₁NH₃⁺(aq) + H₂O(l) ⇄ C₆H₁₁NH₂(aq) + H₃O⁺(aq) pKa
We can find the pKa of C₆H₁₁NH₃⁺ using the following expression.
pKa + pKb = 14.00
pKa = 14.00 - pKb = 14.00 - 3.36 = 10.64
.5336
using avogadro’s law
Your answer would have to be #3
Explanation:
The number of orbitals in the sublevels are given below:
Sublevels Orbitals
s 1
p 3
d 5
f 7
a. ls - 1 orbital
b. 5s - 1 orbital
c. 4d - 5 orbitals
d. 4f - 7 orbitals
e. 7s - 1 orbital
f. 3p - 3 orbitals
g. Entire 5th principal energy level : for s, p , f
1 + 3 + 5 + 7 + 9 = 25
h. 6d - 5
Answer:
121 g/mol
Explanation:
To find the molar mass, you first need to calculate the number of moles. For this, you need to use the Ideal Gas Law. The equation looks like this:
PV = nRT
In this equation,
-----> P = pressure (atm)
-----> V = volume (L)
-----> n = moles
-----> R = constant (0.0821 L*atm/mol*K)
-----> T = temperature (K)
Because density is comparing the mass per 1 liter, I am assuming that the system has a volume of 1 L. Before you can plug the given values into the equation, you first need to convert Celsius to Kelvin.
P = 1.00 atm R = 0.0821 L*atm/mol*K
V = 1.00 L T = 25.0. °C + 273.15 = 298.15 K
n = ? moles
PV = nRT
(1.00 atm)(1.00L) = n(0.0821 L*atm/mol*K)(298.15 K)
1.00 = n(0.0821 L*atm/mol*K)(298.15 K)
1.00 = (24.478115)n
0.0409 = n
Now, we need to find the molar mass using the number of moles per liter (calculated) and the density.
0.0409 moles ? grams 4.95 grams
---------------------- x ------------------ = ------------------
1 L 1 mole 1 L
? g/mol = 121 g/mol
**note: I am not 100% confident on this answer