Answer:
5 years worth of work (aka all of the homework i currently have)
To solve this problem we will apply the theorem given in the conservation of energy, by which we have that it is conserved and that in terms of potential and kinetic energy, in their initial moment they must be equal to the final potential and kinetic energy. This is,


Replacing the 5100MJ for satellite as initial potential energy, 4200MJ for initial kinetic energy and 5700MJ for final potential energy we have that



Therefore the final kinetic energy is 3600MJ
Solution :
Speed of the air craft,
= 262 m/s
Fuel burns at the rate of,
= 3.92 kg/s
Rate at which the engine takes in air,
= 85.9 kg/s
Speed of the exhaust gas that are ejected relative to the aircraft,
=921 m/s
Therefore, the upward thrust of the jet engine is given by

F = 85.9(921 - 262) + (3.92 x 921)
= 4862635.79 + 3610.32
= 
Therefore thrust of the jet engine is
.
The formula for kinetic energy is
KE = (1/2) (mass) (speed)² .
How you measure the object's mass and speed is up to you.
You'd need different methods for different objects, and in some
cases, you'd need quite a bit of ingenuity.