Answer:
D. 2 m/s²
Step-by-step explanation:
Initial speed of the runner (u) = 6 m/s
Final speed of the runner (v) = 14 m/s
Time taken (t) = 4 s
By using equation of motion, we get:

Acceleration of the runner (a) = 2 m/s²
Answer:
I belive it is c
Explanation: If an object is at rest it shall stay at rest until an equal or oppisite force is applied.
Which elements have similar behavior?
Barium, strontium, beryllium.
An advantage of sustainable energy is that it diversifies the energy supply and reduces importance on imported fuels.
A disadvantage is that all types of gaining access to sustainable energy requires a lot of space/ land. This may prevent important necessities such as housing to not have enough land. Hope this helps ;)
Answer:
a) μ = 0.1957
, b) ΔK = 158.8 J
, c) K = 0.683 J
Explanation:
We must solve this problem in parts, one for the collision and the other with the conservation of energy
Let's find the speed of the wood block after the crash
Initial moment. Before the crash
p₀ = m v₁₀ + M v₂₀
Final moment. Right after the crash
pf = m
+ M v_{2f}
The system is made up of the block and the bullet, so the moment is preserved
p₀ = pf
m v₁₀ = m v_{1f} + M v_{2f}
v_{2f} = m (v₁₀ - v_{1f}) / M
v_{2f} = 4.5 10-3 (400 - 190) /0.65
v_{2f} = 1.45 m / s
Now we can use the energy work theorem for the wood block
Starting point
Em₀ = K = ½ m v2f2
Final point
Emf = 0
W = ΔEm
- fr x = 0 - ½ m v₂₂2f2
The friction force is
fr = μN
With Newton's second law
N- W = 0
N = Mg
We substitute
-μ Mg x = - ½ M v2f2
μ = ½ v2f2 / gx
Let's calculate
μ = ½ 1.41 2 / 9.8 0.72
μ = 0.1957
b) let's look for the initial and final kinetic energy
K₀ = 1/2 m v₁²
K₀ = ½ 4.50 10⁻³ 400²
K₀ = 2.40 10² J
Kf = ½ 4.50 10⁻³ 190²
Kf = 8.12 10¹ J
Energy reduction is
K₀ - Kf = 2.40 10²- 8.12 10¹
ΔK = 158.8 J
c) kinetic energy
K = ½ M v²
K = ½ 0.650 1.45²
K = 0.683 J