Answer:
Rate of change of area will be 
Explanation:
We have given rate of change of radius 
Radius of the circular plate r = 52 cm
Area is given by 
So 
Puting the value of r and 

So rate of change of area will be 
Answer:
0.67 s
Explanation:
This is a simple harmonic motion (SHM).
The displacement,
, of an SHM is given by

A is the amplitude and
is the angular frequency.
We could use a sine function, in which case we will include a phase angle, to indicate that the oscillation began from a non-equilibrium point. We are using the cosine function for this particular case because the oscillation began from an extreme end, which is one-quarter of a single oscillation, when measured from the equilibrium point. One-quarter of an oscillation corresponds to a phase angle of 90° or
radian.
From trigonometry,
if A and B are complementary.
At
, 


So

At
, 





The period,
, is related to
by

Answer:
I believe the answer is B) Two wavelengths
The characteristics of the RLC circuit allow to find the result for the capacitance at a resonance of 93.5 Hz is:
- Capacitance is C = 1.8 10⁻⁶ F
A series RLC circuit reaches the maximum signal for a specific frequency, called the resonance frequency, this value depends on the impedance of the circuit.
Where Z is the impedance of the circuit, R the resistance, L the inductance, C the capacitance and w the angular velocity. The negative sign is due to the fact that the current in the capacitor and the inductor are out of phase.
In the case of resonance, the impedance term completes the circuit as a resistive system.
Indicate that the inductance L = 1.6 H and the frequency f = 93.5 Hz.
Angular velocity and frequency are related.
w = 2π f
Let's substitute.
Let's calculate.
C = 1.8 10⁻⁶ F
In conclusion with the characteristics of the RLC circuits we can find the result for the capacitance at a 93.5 Hz resonance is:
- Capacitance is C = 1.8 10⁻⁶ F
Learn more about serial RLC circuits here: brainly.com/question/15595203
1. Resonance. Mechanical waves act on or through a medium, these waves can often have frequencies that are synchronized in a way that makes them act on the matter in the medium more "aggressively."