Answer:
ΔU = e(V₂ - V₁) and its value ΔU = -2.275 × 10⁻²¹ J
Explanation:
Since the electric potential at point 1 is V₁ = 33 V and the electric potential at point 2 is V₂ = 175 V, when the electron is accelerated from point 1 to point 2, there is a change in electric potential ΔV which is given by ΔV = V₂ - V₁.
Substituting the values of the variables into the equation, we have
ΔV = V₂ - V₁.
ΔV = 175 V - 33 V.
ΔV = 142 V
The change in electric potential energy ΔU = eΔV = e(V₂ - V₁) where e = electron charge = -1.602 × 10⁻¹⁹ C and ΔV = electric potential change from point 1 to point 2 = 142 V.
So, substituting the values of the variables into the equation, we have
ΔU = eΔV
ΔU = eΔV
ΔU = -1.602 × 10⁻¹⁹ C × 142 V
ΔU = -227.484 × 10⁻¹⁹ J
ΔU = -2.27484 × 10⁻²¹ J
ΔU ≅ -2.275 × 10⁻²¹ J
So, the required equation for the electric potential energy change is
ΔU = e(V₂ - V₁) and its value ΔU = -2.275 × 10⁻²¹ J
Answer:
YES. 6√10
Explanation:
apply E=1/2mv^2 and find the velocity of carriage which is 6√10 ms-1
as our velocity is higher than that of cart. we can catch the carriage
Answer:
v = 2.18m/s
Explanation:
In order to calculate the speed of Betty and her dog you take into account the law of momentum conservation. The total momentum before Betty catches her dog must be equal to the total momentum after.
Then you have:
(1)
M: mass Betty = 40kg
m: mass of the dog = 15kg
v1o: initial speed of Betty = 3.0m/s
v2o: initial speed of the dog = 0 m/s
v: speed of both Betty and her dog = ?
You solve the equation (1) for v:

The speed fo both Betty and her dog is 2.18m/s
When you heat something of cool it down you don't change the substance you might change the why is looks, but it is still the same substance. For example you cool water to 0 degrees Celsius it turns into ice but it still is two parts hydrogen and one part oxygen H2O. Physical changes will change state and/or form but it will still be what it originally was on the molecular level. Hope that helped.