<u>Answer:</u> The standard heat for the given reaction is -138.82 kJ
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles.
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H^o_{rxn}=\sum [n\times \Delta H_f_{(product)}]-\sum [n\times \Delta H_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f_%7B%28reactant%29%7D%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(3\times \Delta H_f_{(CH_4(g))})+(1\times \Delta H_f_{(CO_2(g))})+(4\times \Delta H_f_{(NH_3(g))})]-[(4\times \Delta H_f_{(CH_3NH_2(g))})+(2\times \Delta H_f_{(H_2O(l))})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%283%5Ctimes%20%5CDelta%20H_f_%7B%28CH_4%28g%29%29%7D%29%2B%281%5Ctimes%20%5CDelta%20H_f_%7B%28CO_2%28g%29%29%7D%29%2B%284%5Ctimes%20%5CDelta%20H_f_%7B%28NH_3%28g%29%29%7D%29%5D-%5B%284%5Ctimes%20%5CDelta%20H_f_%7B%28CH_3NH_2%28g%29%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H_f_%7B%28H_2O%28l%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H_{rxn}=[(3\times (-74.8))+(1\times (-393.5))+(4\times (-46.1))]-[(4\times (-22.97))+(2\times (-285.8))]\\\\\Delta H_{rxn}=-138.82kJ](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%283%5Ctimes%20%28-74.8%29%29%2B%281%5Ctimes%20%28-393.5%29%29%2B%284%5Ctimes%20%28-46.1%29%29%5D-%5B%284%5Ctimes%20%28-22.97%29%29%2B%282%5Ctimes%20%28-285.8%29%29%5D%5C%5C%5C%5C%5CDelta%20H_%7Brxn%7D%3D-138.82kJ)
Hence, the standard heat for the given reaction is -138.82 kJ
Answer:
Infrared thermography
Explanation:
Infrared thermography is equipment or method, which detects infrared energy emitted from object, converts it to temperature, and displays image of temperature distribution. ... We call our equipment as infrared thermography considering such generalization of the terminology.
Chemical reactions that release energy will not occur without a source of energy. So the answer is release.
Answer:
Four possible isomers (1–4) for the natural product essramycin. The structure of compound 1 was attributed to essramycin by 1H NMR, 13C NMR, HMBC, HRMS, and IR experiments.
Explanation:
Three synthetic routes were used to prepare all four compounds (Figure 2A). All three reactions utilize 2-(5-amino-4H-1,2,4-triazol-3-yl)-1-phenylethanone (5) as the precursor, whereas each uses different esters (6–8) to construct the pyrimidinone ring. Isomer 1 was prepared by reaction A, which used triazole 5 and ethyl acetoacetate (6) in acetic acid. This was the reaction used in syntheses of essramycin by the Cooper and Moody laboratories.3,4 Reaction B produced compound 2 (minor product) and compound 3 (major product), which were separated chromatographically. This reaction allowed reagent 5 to react with ethyl 3-ethoxy-2-butenoate (7) in the presence of sodium in methanol, under reflux for 24 h. Compound 4 was prepared by reaction C, which was obtained by reflux of 5 and methyl 2-butynoate (8) in n-butanol.