4. describe three ways carbon dioxide was removed from the Earth's atmosphere.
Answer: Forests: Photosynthisis helps clear carbon dioxide naturally, Soils naturally store carbon, but agricultural soils are running a big deficit due to intensive use. Because agricultural land is so expansive, Bio-energy with Carbon Capture and Storage (BECCS) is another way to use photosynthesis to combat climate change. However, it is far more complicated than planting trees or managing soils — and it doesn’t always work for the climate.
5. Explain why there is now 21% Oxygen in the Earth's atomosphere compaired to little or no Oxygen in the Earth's atmosphere 4.5 billion years ago.
Answer: cientists believe that the Earth was formed about 4.5 billion years ago. Its early atmosphere was probably formed from the gases given out by volcanoes. It is believed that there was intense volcanic activity for the first billion years of the Earth's existence.The early atmosphere was probably mostly carbon dioxide, with little or no oxygen. There were smaller proportions of water vapour, ammonia and methane. As the Earth cooled down, most of the water vapour condensed and formed the oceans.
Sorry its soooo long TwT
Answer:
E° = 1.24 V
Explanation:
Let's consider the following galvanic cell: Fe(s) | Fe²⁺(aq) || Ag⁺(aq) | Ag(s)
According to this notation, Fe is in the anode (where oxidation occurs) and Ag is in the cathode (where reduction occurs). The corresponding half-reactions are:
Anode: Fe(s) ⇒ Fe²⁺(aq) + 2 e⁻
Cathode: Ag⁺(aq) + 1 e⁻ ⇒ Ag(s)
The standard cell potential (E°) is the difference between the standard reduction potential of the cathode and the standard reduction potential of the anode.
E° = E°red, cat - E°red, an
E° = 0.80 V - (-0.44 V) = 1.24 V
There are two carbon atoms in every ethanol molecule, so there would be 60 carbons all together.
I hope this helped you!
For balancing acidic solutions, we would need to add H+ ions to the correct side of the equation to balance the total number of atoms and the overall charge.
<h3>
Answer:</h3>
15 moles
<h3>
Explanation:</h3>
The decomposition of boron carbonate is given by the equation;
B₂(CO₃)₃(s) → B₂O₃(s) + 3CO₂(g)
Moles of boron carbonate decomposed is 5.0 mol
To find the moles of CO₂ produced we are going to use the mole ratio.
Mole ratio of B₂(CO₃)₃ to CO₂ is 1 : 3
Therefore;
Moles of CO₂ = Moles of B₂(CO₃)₃ × 3
= 15 mol
Therefore, 15 moles of CO₂ will be produced