Assuming that both cases describe hydrogen‑like atoms with one electron, More energy is emitted or absorbed for case 2. The correct option is D.
<h3>What is emitting of energy, by electron?</h3>
The energy of the electron decreases as it changes levels, and emission of photons happens in the atom.
With the electron moving from a higher to a lower energy level, the photon is emitted. The photon's energy is the same as the energy lost by an electron moving to a lower energy level.
Thus, the correct option is D, More energy is emitted or absorbed for case 2.
Learn more about emitting of energy
brainly.com/question/14350185
#SPJ4
Mg+Cl2--> MgCl2
Magnesium plus chlorine equals magnesium chloride
Answer:
The filter bed is cleaned by occasional backwashing ;-; im sorry if this isn't a great answer but I tried
the calculated value is Ea is 18.2 KJ and A is 12.27.
According to the exponential part in the Arrhenius equation, a reaction's rate constant rises exponentially as the activation energy falls. The rate also grows exponentially because the rate of a reaction is precisely proportional to its rate constant.
At 500K, K=0.02s−1
At 700K, k=0.07s −1
The Arrhenius equation can be used to calculate Ea and A.
RT=k=Ae Ea
lnk=lnA+(RT−Ea)
At 500 K,
ln0.02=lnA+500R−Ea
500R Ea (1) At 700K lnA=ln (0.02) + 500R
lnA = ln (0.07) + 700REa (2)
Adding (1) to (2)
700REa100R1[5Ea-7Ea] = 0.02) +500REa=0.07) +700REa.
=ln [0.02/0 .07]
Ea= 2/35×100×8.314×1.2528
Ea =18227.6J
Ea =18.2KJ
Changing the value of E an in (1),
lnA=0.02) + 500×8.314/18227.6
= (−3.9120) +4.3848
lnA=0.4728
logA=1.0889
A=antilog (1.0889)
A=12.27
Consequently, Ea is 18.2 KJ and A is 12.27.
Learn more about Arrhenius equation here-
brainly.com/question/12907018
#SPJ4
Answer:
1. not affected by a magnet 1 liquid
2. mostly space 2 solid
3. flows freely but particles still attract 3 proton
4. positively charged particles 4 gas
5. free to move in all space 5 alpha particles
6. negatively charged particles 6 atoms
7. atoms nearly fixed in space 7 gamma ray 8. helium nucleus 8 electron (beta)