Answer:
percentage by mass of each element in a compound.
Explanation:
Answer:
11.45kcal/g
2.612 × 10³ kcal
Explanation:
When a compound burns (combustion) it produces carbon dioxide and water. The combustion of 2-methylheptane can be represented by the following balanced equation:
2 C₈H₁₈ + 25 O₂ ⇄ 16 CO₂ + 18 H₂O
It releases 1.306 × 10³ kcal every 1 mol of C₈H₁₈ that is burned.
<em>What is the heat of combustion for 2-methylheptane in kcal/gram?</em>
We know that the molar mass of C₈H₁₈ is 114.0g/mol. Then, using proportions:

<em>How much heat will be given off if molar quantities of 2-methylheptane react according to the following equation? 2 C₈H₁₈ + 25 O₂ ⇄ 16 CO₂ + 18 H₂O</em>
In this equation we have 2 moles of C₈H₁₈. So,

Gases, bc its expand the most upon heating because the intermolecular space is more than in solids or liquids.
intermolecular space = the space between each particles
Based on the nature of chemical equilibrium, the system reached equilibrium first at the time T2.
<h3>What is chemical equilibrium?</h3>
Chemical equilibrium refers to the state of a reversible chemical reaction in which the rate of forward reaction for the the formation is equal to the rate of backward reaction for the formation of reactants.
In the table of the decomposition reaction given above, the system reached equilibrium first at the time T2 when the concentration of the reactant and products were the same.
Learn more about chemical equilibrium at: brainly.com/question/5081082