Answer:
A polar covalent bond is a covalent bond in which the atoms have an unequal attraction for electrons and so the sharing is unequal. In a polar covalent bond, sometimes simply called a polar bond, the distribution of electrons around the molecule is no longer symmetrical.
Explanation:
Answer: kinetic, move faster, potential, change form
Explanation:
Answer:
[NH₃] → 3.24 M
Explanation:
Our solute: Ammonia
Our solvent: Water
Solution's mass = Mass of solute + Mass of solvent
Solution's mass = 15 g + 250 g = 265g
We use density to determine, the volume.
D = mass /volume → Volume = m / D → 265 g /0.974 g/mL = 272.07 mL.
We convert the mL to L → 272.07 mL . 1L /1000mL = 0.27207 L
To determine molarity we need the moles of solute in 1 L of solution.
Moles of solute are: 15g / 17g/mol = 0.882 moles
[NH₃] = 0.882mol /0.27207 L → 3.24 M
The answer for the problem is explained below.
The option for the answer is "D".
<u><em>Therefore the energy of the light is 4.25 × 10^-19 J</em></u>
Explanation:
Given:
wavelength (λ) = 468 nm = 468×10^-9 m
speed of light (c) = 3.00 x 10^8m/s
Planck's constant is 6.626 x 10^-34J·s
To solve:
energy of light (E)
We know,
E =(h×c) ÷ λ
E = ( 6.626 x 10^-34 × 3.00 x 10^8) ÷ 468×10^-9
E = 4.25 × 10^-19 J
<u><em>Therefore the energy of the light is 4.25 × 10^-19 J</em></u>
H₂SO₄ + Ba(OH)₂ -----> BaSO₄ + 2H₂O
Coefficient for sulfuric acid: 1