Answer:
it will be 1/√2 of its original period.
Explanation:
The answer is either answer B or answer C! Hope that helps
Answer:
I think its 9.0397 Ohms
Explanation:
take the reciprocal of all the resistances: 1/15, 1/65, 1/35
then add them: = 151/1365
then reciprocal the answer: =1365/151
And chuck it on a calculator: =9.04 Ohms
I think this is right but I'm not entirely sure. Tell me if I'm right by the way!
Answer:
1.29 N
Explanation:
The equation for force (with work and distance) is:

We can plug in the given values into the equation:

The partial pressures of HBr when the system reaches equilibrium is 2.4 X 10⁻¹¹ atm
<u>Explanation:</u>
H₂ + Br₂ ⇒ 2HBr
PH₂ = 0.782atm
PBr₂ = 0.493atm
Kp = (PHBr)²/ (PH₂) (PBr₂) = 1.4 X 10⁻²¹
At equilibrium:
Let 2x = pressure of HBr
PH₂ = 0.782 -x
PBr₂ = 0.493 - x
Kp = (2x)^2 / (0.782-x)(0.493-x)
Now, because Kp is very small, x will be very small compared to 0.782 and 0.493.
Then,
Kp = 1.4X10⁻²¹ = (4x²) / (0.782)(0.493)
x = 1.2X10⁻¹¹
PHBr = 2x = 2.4 X 10⁻¹¹ atm
Therefore, the partial pressures of HBr when the system reaches equilibrium is 2.4 X 10⁻¹¹ atm