Answer:
roar
Explanation:
UUUUUUUUUUWWWWWWWWWWWUUUUUUUUU
Answer:
There are 5 significant digits in 0.23100.
Explanation:
This is because all non-zero digits are considered significant and zeros after decimal points are considered significant.
The empirical formula is a formula of a compound showing the proportion of each element involved in the compounds but it does not represent the total number of atoms in the compound. It is the lowest number of ratio between the elements in the compound. In order, to determine the actual number of the atoms or the molecular formula of the compounds, we make use of the molar mass of the compound.
<span>To
determine the molecular formula, we multiply a value to the empirical formula.
Then, calculate the molar mass and see whether it is equal to the one
given (104.1 g/ mol). From the choices, the only valid options are b, d and e.
</span> molar mass
1 CH 13.02
8 C8H8 104.16
6 C6H6 78.12
Therefore the correct answer is option B.
Answer:
Polyatomic Ionic Compound
Explanation:
In given statement the compound given is called as Sodium oleate this means that when Oleic acid is treated with NaOH then it forms.
In chemistry there are few species which are involved in the formation of compounds.
(i) Atoms:
It is very common that atoms of different elements combine to form compound through covalent bond. For example, H₂, O₂, N₂, F₂ e.t.c.
(i) Ions:
Other than covalent compounds we have ionic compounds. Ionic compounds are made up of ions. These ions forming the ionic compounds can be monatomic like Na⁺, Br⁻, Mg²⁺, Al³⁺, N⁻³ or they can be polyatomic like CO₃²⁻, SO₄²⁻, NH₄⁺, PO₄³⁻ e.t.c.
(iii) Polyatomic Ions:
In polyatomic ions we find a charge on a molecule which contains two or more atoms bonded covalently. Hence, in given compound we have a long chain of molecule containing a negative charge neutralized by opposite +ve charged sodium ion. Hence, Sodium oleate is a polyatomic ionic compound.
It means that the fit and well adjusted ones thrive and "make it", and the weak ones that can't adapt die.