The specific gravity is how the density of the object compares to the density of water. Water's density is 1gram per milliliter. We just need to figure out the density of the object.
The object is .8 kg and it displaces 500mL of water, so the density is the mass divided by the volume. Since the density of water is given in grams, we have to convert the objects mass from kg to g and then we can get the density.
.8kg * 1000g/kg = 800 grams
So
800g/500ml = 1.6grams/mL this is the density.
So divide the density of your object by the density of water, which is 1g/mL, you get 1.6 as the specific gravity. This means the object is 1.6 times more dense than water.
Answer:
4.18
Explanation:
Givens
The car's initial velocity
= 0 and covering a distance Δx = 1/4 mi = 402.336 m in a time interval t = 4.43 s.
Knowns
We know that the maximum static friction force is given by:
μ_s*n (1)
Where μ_s is the coefficient of static friction and n is the normal force.
Calculations
(a) First, we calculate the acceleration needed to achieve this goal by substituting the given values into a proper kinematic equation as follows:
Δx=
a=41 m/s
This is the acceleration provided by the engine. Applying Newton's second law on the car, so in equilibrium, when the car is about to move, we find that:

Substituting (3) into (1), we get:
μ_s*m*g
Equating this equation with (4), we get:
ma= μ_s*m*g
μ_s=a/g
=4.18
What statement best describes what it means to maximize your efforts in sports?
D.none of the above