Gs*rs^2 = gm*rm^2
<span>rm = rs*√gs/gm </span>
<span>rm = 6370*√9.83/(9.83-0.009) = 6372.92 </span>
<span>mountain observatory is placed at an altitude worth 2920 m asl
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
</span>
Answer:
Keeping the speed fixed and decreasing the radius by a factor of 4
Explanation:
A ball is whirled on the end of a string in a horizontal circle of radius R at constant speed v. The centripetal acceleration is given by :

We need to find how the "centripetal acceleration of the ball can be increased by a factor of 4"
It can be done by keeping the speed fixed and decreasing the radius by a factor of 4 such that,
R' = R/4
New centripetal acceleration will be,




So, the centripetal acceleration of the ball can be increased by a factor of 4.
By Newton's second law, the net force on the object is
∑ <em>F</em> = <em>m</em> <em>a</em>
∑ <em>F</em> = (2.00 kg) (8 <em>i</em> + 6 <em>j</em> ) m/s^2 = (16.0 <em>i</em> + 12.0 <em>j</em> ) N
Let <em>f</em> be the unknown force. Then
∑ <em>F</em> = (30.0 <em>i</em> + 16 <em>j</em> ) N + (-12.0 <em>i</em> + 8.0 <em>j</em> ) N + <em>f</em>
=> <em>f</em> = (-2.0 <em>i</em> - 12.0 <em>j</em> ) N
Answer:
Plane will 741.6959 m apart after 1.7 hour
Explanation:
We have given time = 1.7 hr
So if we draw the vectors of a 2d graph we see that the difference in angles is = 
Speed of first plane = 730 m/h
So distance traveled by first plane = 730×1.7 = 1241 m
Speed of second plane = 590 m/hr
So distance traveled by second plane = 590×1.7 = 1003 m
We represent these distances as two sides of the triangle, and the distance between the planes as the side opposing the angle 58.6.
Using the law of cosine,
representing the distance between the planes, we see that:

r = 741.6959 m