The acid dissociation constant is 1.3 × 10^-3.
<h3>What is acid-dissociation constant?</h3>
The acid-dissociation constant is a constant that shows the extent of dissociation of an acid in solution. We have to set up the reaction equation as shown below;
Let the acid be HA;
HA + H2O ⇄ H3O^+ + A^-
since the pH of the solution is 2.57 then;
[H3O^+] = Antilog(-pH) = Antilog(-2.57) = 2.7 × 10^-3
We can see that; [H3O^+] = [A^-] so;
Ka = (2.7 × 10^-3)^2/(5.5 × 10^–3)
Ka = 1.3 × 10^-3
Learn more about acid-dissociation constant: brainly.com/question/9728159
Answer: C
creativity
Explanation:
C. Because the results of some experiments might not be explained by any
known theories.
You have the stoichiometric equation. This tells you unequivocally that an
18
⋅
g
mass of water, 1 mole, reacts with a
56.07
⋅
g
mass of quicklime to form a
74.09
⋅
g
mass of slaked lime.
If you don't from where I am getting these numbers, you should know, and someone will be willing to elaborate.
Here, you have formed
6.21
⋅
m
o
l
of quicklime which requires stoichiometric lime AND water. And thus you need a mass of
6.21
⋅
m
o
l
×
18.01
⋅
g
⋅
m
o
l
−
1
water
≅
88
⋅
g
.
In practice, of course I would not weigh out this mass. I would just pour
100
−
200
⋅
m
L
of water into the lime.