.774atm
First, look at what you have and look at the equations you can use to solve this problem. The best equation would be PV=nRT.
P being pressure, V being volume, n being moles, R being the gas constant, and T being temperature.
Before you start doing any of the math, make sure of two things. Since you're looking for pressure, you'll need a gas constant. When I did the problem, I used the gas constant of atm or atmospheres which is .0821.
Also! Remember to always convert celsius into kelvin, to do this, add 273 to the given celsius degree. After this is all set and done, your equation should look like this:
P = 
The reason that the equation is divided by the volume is due to the fact that you need to isolate the variable or pressure.
Multiply everything on the top and divide by the bottom and you should receive the final answer of .774atm.
Hope this helps!
Answer:
XY₂Z₄
2.35 mol Z
Explanation:
A sample of the compound contains 0.221 mol X, 0.442 mol Y, and 0.884 mol Z. We can find the simplest formula (empirical formula) by <em>dividing all the numbers of moles by the smallest one</em>.
X: 0.221/0.221 = 1
Y: 0.442/0.221 = 2
Z: 0.884/0.221 = 4
The simplest formula is XY₂Z₄.
The molar ratio of X to Z is 1:4. The moles of Z in a sample that contained 0.588 moles of X is:
0.588 mol X × (4 mol Z/1 mol X) = 2.35 mol Z
Answer:
Mass of solution=100g
mass of salt=20g
so; mass of solute=80g
percentage composition =(mass of salt/total
mass) ×100
= \frac{20}{100} \times 100 \\ = 20\%
glad to help you
hope it helps
Answer:
1.8 × 10² cal
Explanation:
When 0.32 g of a walnut is burned, the heat released is absorbed by water and used to raise its temperature. We can calculate this heat (Q) using the following expression.
Q = c × m × ΔT
where,
c: specific heat capacity of water
m: mass of water
ΔT: change in the temperature
Considering the density of water is 1 g/mL, 58.1 mL = 58.1 g.
Q = c × m × ΔT
Q = (1 cal/g.°C) × 58.1 g × 3.1°C
Q = 1.8 × 10² cal