<span>The y-intercept of is .
Of course, it is 3 less than , the y-intercept of .
Subtracting 3 does not change either the regions where the graph is increasing and decreasing, or the end behavior. It just translates the graph 3 units down.
It does not matter is the function is odd or even.
is the mirror image of stretched along the y-direction.
The y-intercept, the value of for , is</span><span>which is times the y-intercept of .</span><span>Because of the negative factor/mirror-like graph, the intervals where increases are the intervals where decreases, and vice versa.
The end behavior is similarly reversed.
If then .
If then .
If then .
The same goes for the other end, as tends to .
All of the above applies equally to any function, polynomial or not, odd, even, or neither odd not even.
Of course, if polynomial functions are understood to have a non-zero degree, never happens for a polynomial function.</span><span> </span>
Answer:
The vertex for parabola y²=4ax is (0,0)
and for (y-k) ²= 4a(x+h), vertex is (h, k).
But you have not given the equation of parabola in the equation.
2/5
0.4/1*10/10=4/10
4/10%2/2=2/5
An equation
what else could it be?