Answer:
contaminated drinking water
deaths of sea creatures that are used as a food source
limits to potential economic activities such as a fishing
Explanation:
A watershed is a large area that comprises of drainage area of all the surrounding water bodies meeting at a common affluence point before draining into sea or ocean or any other large water body. Pollution in this area can pollute the small water streams flowing through it, thereby polluting the larger water body into which it drains.
Thus, the water extracted for drinking from such area will be contaminated. Pollution in larger water body can cause death of water creature and hence pose a threat to fishing.
The acceleration of the crate after it begins to move is 0.5 m/s²
We'll begin by calculating the the frictional force
Mass (m) = 50 Kg
Coefficient of kinetic friction (μ) = 0.15
Acceleration due to gravity (g) = 10 m/s²
Normal reaction (N) = mg = 50 × 10 = 500 N
<h3>Frictional force (Fբ) =?</h3>
Fբ = μN
Fբ = 0.15 × 500
<h3>Fբ = 75 N</h3>
- Next, we shall determine the net force acting on the crate
Frictional force (Fբ) = 75 N
Force (F) = 100 N
<h3>Net force (Fₙ) =?</h3>
Fₙ = F – Fբ
Fₙ = 100 – 75
<h3>Fₙ = 25 N</h3>
- Finally, we shall determine the acceleration of the crate
Mass (m) = 50 Kg
Net force (Fₙ) = 25 N
<h3>Acceleration (a) =?</h3>
a = Fₙ / m
a = 25 / 50
<h3>a = 0.5 m/s²</h3>
Therefore, the acceleration of the crate is 0.5 m/s²
Learn more on friction: brainly.com/question/364384
Answer:
a) {[1.25 1.5 1.75 2.5 2.75]
[35 30 25 20 15] }
b) {[1.5 2 40]
[1.75 3 35]
[2.25 2 25]
[2.75 4 15]}
Explanation:
Matrix H: {[1.25 1.5 1.75 2 2.25 2.5 2.75]
[1 2 3 1 2 3 4]
[45 40 35 30 25 20 15]}
Its always important to get the dimensions of your matrix right. "Roman Columns" is the mental heuristic I use since a matrix is defined by its rows first and then its column such that a 2 X 5 matrix has 2 rows and 5 columns.
Next, it helps in the beginning to think of a matrix as a grid, labeling your rows with letters (A, B, C, ...) and your columns with numbers (1, 2, 3, ...).
For question a, we just want to take the elements A1, A2, A3, A6 and A7 from matrix H and make that the first row of matrix G. And then we will take the elements B3, B4, B5, B6 and B7 from matrix H as our second row in matrix G.
For question b, we will be taking columns from matrix H and making them rows in our matrix K. The second column of H looks like this:
{[1.5]
[2]
[40]}
Transposing this column will make our first row of K look like this:
{[1.5 2 40]}
Repeating for columns 3, 5 and 7 will give us the final matrix K as seen above.
Answer:
I think D
Explanation:
if energy is added,it wont stay the same,I beleive D is the only one that makes since,sorry if wrong