The mechanical advantage is the factor by which
the machine multiplies the input force.
If the MA is 3 and the input force is 630N, then
the output force is
(3) x (630N) = 1,890N
The question is asking to calculate the tension that the string has to adjust the string so that when vibrating in its second overtone, it produces sound of wavelength of 0.761m, base on my calculation, the calculation must be done by the formula of <span>v=λf</span><span>., I hope this would help </span>
Answer:
129.74 Hz
Explanation:
Given:
Wave velocity ( v ) = 346 m / sec
wavelength ( λ ) = 2.69 m
We have to calculate Frequency ( f ) :
We know:
v = λ / t [ f = 1 / t ]
v = λ f
= > f = v / λ
Putting values here we get:
= > f = 346 / 2.69 Hz
= > f = 34600 / 269 Hz
= > f = 129.74 Hz
Hence, frequency of sound is 129.74 Hz.
Answer:
The answer is A
Explanation:
Lightning is formed by electrons in the air
Answer:
14 N
Explanation:
The tension in the second string is puling both the masses of 20 kg and 8 kg with acceleration of 0.5 m s⁻²
So tension in the second string = total mass x acceleration
= 28 x .5 = 14 N . Ans..