Answer:
Force = 125 [N]
Explanation:
In the attached image we can see a sketch of the lever system.
And if we make a sum of moments at the point O equal to zero (0).
In the equation showed in the image, we can determinate the force that we need
Answer:
2.2 s
Explanation:
Hi!
Let's consider the origin of the coordinate system at the ground, and consider that the clam starts with zero velocity, the equation of motion of the clam is given by

We are looking for a time t for which x(t) = 0

Solving for t:

Rounding at the first decimal:
t = 2.2 s
Answer:
less than stating velocity due to friction and air resistance.
Explanation:
Answer:
Strong nuclear force is 1-2 order of magnitude larger than the electrostatic force
Explanation:
There are mainly two forces acting between protons and neutrons in the nucleus:
- The electrostatic force, which is the force exerted between charged particles (therefore, it is exerted between protons only, since neutrons are not charged). The magnitude of the force is given by

where k is the Coulomb's constant, q1 and q2 are the charges of the two particles, r is the separation between the particles.
The force is attractive for two opposite charges and repulsive for two same charges: therefore, the electrostatic force between two protons is repulsive.
- The strong nuclear force, which is the force exerted between nucleons. At short distance (such as in the nucleus), it is attractive, therefore neutrons and protons attract each other and this contributes in keeping the whole nucleus together.
At the scale involved in the nucleus, the strong nuclear force (attractive) is 1-2 order of magnitude larger than the electrostatic force (repulsive), therefore the nucleus stays together and does not break apart.