Answer:
Niels Bohr states that the line spectrum of the hydrogen atom by assuming that the electron revolve in circular paths and that the paths have an allowable radii. ...
Explanation:
discuss the origin of the line citing the bohr theory of the atom specify any energy transitions that are applicable
Niels Bohr states that the line spectrum of the hydrogen atom by assuming that the electron revolve in circular orbits and that orbits have an allowable radii. ... an absorption spectrum is produced, dark lines in the same position as the bright lines in the emission spectrum of an element are produced.
Bohr Atomic Model. Bohr Atomic Model : In 1913 Bohr proposed his quantized shell model of the atom to explain how electrons can have stable orbits around the nucleus. ... The atom will be stable in the state with the smallest orbit
Bohr explains to us that electron revolve round the nuclues of an atom and possess energy levels. they can change energy levels
By crushing a solid into a powder you increase the reaction rate (the chemical reaction rate). By crushing into a powder, you are increasing the surface area, increasing the exposure to the chemical reaction. The smaller the particles, the faster the chemical reaction that will take place. Think about an ice cube put in a pot of boiling water. The whole ice cube will take longer to melt than if you first crushed that ice cube into small pieces. Small pieces of ice put into boiling water would melt very quickly.
Hope this helps!! :)
Answer:
20.67 kcal of energy is released.
Explanation:
It is given that, an exothermic reaction releases 86.5 kJ. We need to convet kJ to calories.
Since,
1 kcal = 4.184 kJ
So,
1 kJ = 0.239 kcal
For 86.5 kJ,
86.5 kJ = (0.239 × 86.5) kcal
86.5 kJ = 20.67 kcal
So, 20.67 kcal of energy is released.
Answer : The concentration of
and
are
and
respectively.
Solution : Given,
pH = 4.10
pH : pH is defined as the negative logarithm of hydronium ion concentration.
Formula used : ![pH=-log[H_3O^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH_3O%5E%2B%5D)
First we have to calculate the hydronium ion concentration by using pH formula.
![4.10=-log[H_3O^+]](https://tex.z-dn.net/?f=4.10%3D-log%5BH_3O%5E%2B%5D)
![[H_3O^+]=antilog(-4.10)](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%3Dantilog%28-4.10%29)
![[H_3O^+]=7.94\times 10^{-5}](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%3D7.94%5Ctimes%2010%5E%7B-5%7D)
Now we have to calculate the pOH.
As we know, 


Now we have to calculate the hydroxide ion concentration.
![pOH=-log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-log%5BOH%5E-%5D)
![9.9=-log[OH^-]](https://tex.z-dn.net/?f=9.9%3D-log%5BOH%5E-%5D)
![[OH^-]=antilog(-9.9)](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3Dantilog%28-9.9%29)
![[OH^-]=1.258\times 10^{-10}](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D1.258%5Ctimes%2010%5E%7B-10%7D)
Therefore, the concentration of
and
are
and
respectively.
Answer:
Procedure (2)
Explanation:
Assume the dialyses come to equilibrium in the allotted times.
Procedure (1)
If you are dialyzing 5 mL of sample against 4 L of water, the concentration of NaCl will be decreased by a factor of

Procedure (2)
For the first dialysis, the factor is

After a second dialysis, the original concentration of NaCl will be reduced by a factor of

Procedure (2) is more efficient by a factor of
