Kinetic energy of an object can be expressed in terms of its mass m and velocity v as:
KE = 1/2 * m* v²
Thus higher the velocity, greater will be the Kinetic energy. Now, as the box moves along a ramp from top to bottom, its velocity increases and so does the KE. Hence, kinetic energy is maximum at the bottom
Ans B) at the bottom
<h3>Answer:</h3>
Excess Reagent = NBr₃
<h3>Solution:</h3>
The Balance Chemical Equation for the reaction of NBr₃ and NaOH is as follow,
2 NBr₃ + 3 NaOH → N₂ + 3 NaBr + 3 HBrO
Calculating the Limiting Reagent,
According to Balance equation,
2 moles NBr₃ reacts with = 3 moles of NaOH
So,
40 moles of NBr₃ will react with = X moles of NaOH
Solving for X,
X = (40 mol × 3 mol) ÷ 2 mol
X = 60 mol of NaOH
It means 40 moles of NBr₃ requires 60 moles of NaOH, while we are provided with 48 moles of NaOH which is Limited. Therefore, NaOH is the limiting reagent and will control the yield of products. And NBr₃ is in excess as some of it is left due to complete consumption of NaOH.
Answer : The percent composition of Pb and Sn in atom is, 3.21 % and 96.8 % respectively.
Explanation :
First we have to calculate the number of atoms in 5.5 wt% Pb and 94.5 wt% of Sn.
As, 207.2 g of lead contains
atoms
So, 5.5 g of lead contains
atoms
and,
As, 118.71 g of lead contains
atoms
So, 94.5 g of lead contains
atoms
Now we have to calculate the percent composition of Pb and Sn in atom.


and,


Thus, the percent composition of Pb and Sn in atom is, 3.21 % and 96.8 % respectively.
CO2 and H2O react to form H2CO3 and two bonds are broken each in CO and H2O to form H2CO3.
<h3>What is chemical bonding?</h3>
Chemical bonding refers to the forces of attraction which hold atoms of the same or different elements together in order to form stable compounds or molecules .
Chemical bonding may be either ionic or covalent.
The greater the number of bonds in a compound, the more stable the compound.
During chemical reactions, bonds are broken and new binds are formed.
There are two bonds each in CO2 and H2O.
This, in the reaction between CO2 and H2O react to form H2CO3, , the number of bonds broken in H2O is two and in CO2 is two.
Learn more about chemical bonding at: brainly.com/question/819068