I believe that it is all of the above.
"A Scientific Hypothesis Must Be "Falsifiable". A scientific hypothesis must be testable, but there is a much stronger requirement that a testable hypothesis must meet before it can really be considered scientific."
I hope this helped, have a nice day!
Explanation:
substance Q could be <em><u>oxygen (O2)</u></em>
substance R could be <em><u>carbon</u></em><em><u> </u></em><em><u>d</u></em><em><u>i</u></em><em><u>o</u></em><em><u>x</u></em><em><u>i</u></em><em><u>d</u></em><em><u>e</u></em><em><u> </u></em><em><u>(</u></em><em><u>C</u></em><em><u>O</u></em><em><u>2</u></em><em><u>)</u></em>
The number of bacteria is given by:
N(t) = N(o) x 2ⁿ
Where N(t) is the number after n hours have passed and N(o) is the original number which is 15.
The number grown in the 12th hour is the difference in the number after the 11th and the 12th hour. Thus:
15 x 2¹² - 15 x 2¹¹
= 30,720 bacteria
Polair molecule, because the oxygen is slightly more negative than the two hydrogen atoms. Making water slightly negative. Due to the fact oxygen holds the to valence electrons more than the two hydrogen atoms do.
Answer:
XY₂Z₄
2.35 mol Z
Explanation:
A sample of the compound contains 0.221 mol X, 0.442 mol Y, and 0.884 mol Z. We can find the simplest formula (empirical formula) by <em>dividing all the numbers of moles by the smallest one</em>.
X: 0.221/0.221 = 1
Y: 0.442/0.221 = 2
Z: 0.884/0.221 = 4
The simplest formula is XY₂Z₄.
The molar ratio of X to Z is 1:4. The moles of Z in a sample that contained 0.588 moles of X is:
0.588 mol X × (4 mol Z/1 mol X) = 2.35 mol Z