If u disturbed equilibrium position then this principal comes into effect deciding how to counteract the disturbance.
Mass of KCl= 1.08 g
<h3>Further explanation</h3>
Given
1 g of K₂CO₃
Required
Mass of KCl
Solution
Reaction
K₂CO₃ +2HCl ⇒ 2KCl +H₂O + CO₂
mol of K₂CO₃(MW=138 g/mol) :
= 1 g : 138 g/mol
= 0.00725
From the equation, mol ratio K₂CO₃ : KCl = 1 : 2, so mol KCl :
= 2/1 x mol K₂CO₃
= 2/1 x 0.00725
= 0.0145
Mass of KCl(MW=74.5 g/mol) :
= mol x MW
= 0.0145 x 74.5
= 1.08 g
Answer:
3M
Explanation:
Molarity is one of the measures of the molar concentration of a solution, which can be calculated by using the formula below:
Molarity = number of moles ÷ volume
From the information given in this question, 4 liters of a solution contains 12 moles of sugar. This means that n = 12mol and V = 4L
Molarity = n/V
Molarity = 12/4
Molarity = 3
Hence, the molarity of the sugar solution is 3mol/L or 3M
Answer: Correct options are as follows.
- salt is not chemically bonded to water.
- salt and water retain their own chemical properties.
Explanation:
When salt is dissolved in water then it means that it is a physical change as salt has completely dissociated into ions but they are not chemically combined to the water molecules.
As a result, both salt and water will retain their chemical properties.
For example, NaCl when dissolved in water will dissociate as follows.

Only the particles of salt have evenly distributed in water.
And, when a components of a salt chemically combine with another substance then it will form a new compound.
Therefore, we can conclude that salt dissolved in water is a solution, therefore:
- salt is not chemically bonded to water.
- salt and water retain their own chemical properties.
Answer:
snow, or freezing rain?
Explanation:
because freezing rain can occur then, but snow is more common.