Answer:
2HNO3+ Ba(OH)2 = Ba(NO3)2 + 2H2O
H3PO4 + Ca(OH)2 = Ca3(PO4)2 + 6H2O
Explanation:
2HNO3+ Ba(OH)2 = Ba(NO3)2 + 2H2O
H3PO4 + Ca(OH)2 = Ca3(PO4)2 + 6H2O
H+
O2-
OH-
Ba2+
Ca2+
NO3-
P 5+, 3+, 3-
H2O
Answer:
81.5g/mol
Explanation:
Molar mass is the ratio between mass of a substance (In this case, 0.207g) and moles presents in this mass.
To solve this question we must find the moles of the gas in order to obtain the molar mass using:
PV = nRT
PV / RT = n
<em>Where P is pressure = 0.980atm</em>
<em>V is volume in Liters = 0.0725L</em>
<em>R is gas constant = 0.082atmL/molK</em>
<em>T is absolute temperature = 68°C + 273.15 = 341.15K</em>
<em />
0.980atm*0.0725L / 0.082atmL/molK*341.15K = n
2.54x10⁻³ moles = n
Thus, the molar mass of the gas is:
0.207g / 2.54x10⁻³ moles
<h3>81.5g/mol</h3>
Answer:
The temperature of the cold water is lower than the warm one. So, when we put the hand in the warm from the cold water, our hand will absorb heat, causing the hand to feel hot. Thus, we can conclude that the more heat it absorbs, the more hotter it is. Whereas the more heat it releases, the colder it is.
The unknown alcohol = 2-propanol
<h3>Further explanation</h3>
Given
volume = 50 ml
mass = 39.4 g
Required
The unknown alcohol
Solution
Density of sample :
= mass : volume
= 39.4 g : 50 ml
= 0.788 g/ml
The unknown alcohol at room temperature = liquid, so the unknown alcohol is 2-propanol because it has temperature range between -90 to 82 for liquid and the density = 0.788 g/ml