Answer:
The tension is 75.22 Newtons
Explanation:
The velocity of a wave on a rope is:
(1)
With T the tension, L the length of the string and M its mass.
Another more general expression for the velocity of a wave is the product of the wavelength (λ) and the frequency (f) of the wave:
(2)
We can equate expression (1) and (2):
=
Solving for T
(3)
For this expression we already know M, f, and L. And indirectly we already know λ too. On a string fixed at its extremes we have standing waves ant the equation of the wavelength in function the number of the harmonic is:
It's is important to note that in our case L the length of the string is different from l the distance between the pin and fret to produce a Concert A, so for the first harmonic:
We can now find T on (3) using all the values we have:
"<span>An atom is the smallest unit of matter and an element is a pure substance that is made of identical atoms" is correct. Although atoms can be broken down further now, it still take a whole atom to make an element. </span>