Answer:
see below
Explanation:
acceleration = Δv /Δt
for this situation 60 / 10 = 6 m/s^2
B) vf = vo + at
vf = 0 + 6(3) =<u> 18 m/s after 3 seconds </u>
<u />
C) vf = at
60 = 6 ( t) t = 10 seconds ( actually, this was given)
d = 1/2 a t^2
= 1/2 (6) (10)^2 = <u>300 m </u>
<u />
In a real system of levers, wheel or pulleys, the AMA (actual mechanical advantage) is less than the IMA (ideal mechanical advantage) because of the presence of friction.
In fact, the IMA and the AMA of a machine are defined as the ratio between the output force (the load) and the input force (the effort):

however, the difference is that the IMA does not take into account the presence of frictions, while the AMA does. As a result, the output force in the AMA is less than the output force in the IMA (because some energy is dissipated due to friction), and the AMA is less than the IMA.
Answer:
The magnitude of acceleration is reduced.
Explanation:
Force is defined as push or pull
The force is said to be<em> balance force </em>if the force are equal in size but opposite in direction. ie the object does not move or move with constant speed.
The force are to be<em> unbalanced force </em>if the force cause change in motion. ie the object has force greater than zero and has acceleration.
According to <em>Newton second law of motion </em>, acceleration depends on force acting on the object and mass of object.
F=ma
a=
When unbalanced force act on the mass of object it reduces magnitude of acceleration without changing the direction.
A. Acceleration that’s the answer I think so
Hydroelectricity is the best answer.
This is an article by the EIA, but the pie graph is the most helpful: https://www.eia.gov/energyexplained/?page=us_energy_home