Answer:
2.86×10⁻¹⁸ seconds
Explanation:
Applying,
P = VI................ Equation 1
Where P = Power, V = Voltage, I = Current.
make I the subject of the equation
I = P/V................ Equation 2
From the question,
Given: P = 0.414 W, V = 1.50 V
Substitute into equation 2
I = 0.414/1.50
I = 0.276 A
Also,
Q = It............... Equation 3
Where Q = amount of charge, t = time
make t the subject of the equation
t = Q/I.................. Equation 4
From the question,
4.931020 electrons has a charge of (4.931020×1.6020×10⁻¹⁹) coulombs
Q = 7.899×10⁻¹⁹ C
Substitute these value into equation 4
t = 7.899×10⁻¹⁹/0.276
t = 2.86×10⁻¹⁸ seconds
Explanation:
For a circular orbit v=
with G = 6.6742 × 
Given m = 6.42 x 10^23 kg and r=9.38 x 10^6 m
=> v = 2137.3 m/s
I hope this is the correct way to solve
Well there has to have a altering linear position
-- If 2,000 newtons of force were applied through a distance of 1,000 meters,
then 2,000,000 newton-meters = 2,000,000 joules of work were done.
-- 45 minutes = (45 x 60) = 2,700 seconds
-- Power = (work) / (time) = (2,000,000 j) / (2,700 s) = <u>740.74 watts</u>
Interestingly, that's almost exactly 1 horsepower. (0.99295... of 746 watts)
Answer:
1.9841256 kg
Explanation:
Given;
Length of the swimming pool = 25.0 ft = 7.62 m ( 1 ft = 0.3048 m )
Width of the swimming pool = 18.5 ft = 5.64 m
Depth of the pool = 9.0 ft =
Total depth of the water in the pool when filled = 9 ft - 7 inches = 2.56 m
now,
Volume of the water in the pool = Length × Width × Depth
or
Volume of the water in the pool = 7.62 × 5.64 × 2.56 = 110.2292 m³
also,
1 m³ = 1000 L
thus,
110.2292 m³ = 110229.2 L
also it is given that 18 mg of Cl is added to 1 liter of water
therefore,
In 110229.2 L of water Cl added will be = 110229.2 × 18 = 1984125.6 mg
or
= 1.9841256 kg