Answer:
0.04973 W
Explanation:
I = Intensity of laser =
(assumed, as it is not given)
d = Diameter of spot = 1.31 mm
r = Radius = 
A = Area = 
Power is given by

The power output of the laser is 0.04973 W
Answer:
condensation - thermal energy removed
freezing -thermal energy removed
deposition - thermal energy removed
sublimation - thermal energy added
evaporation - thermal energy added
melting - thermal energy added
Explanation:
Thermal energy is heat energy. Processes in which heat is added involve the addition of thermal energy while processes in which heat energy is removed involves removal of thermal energy.
Condensation involves a change from gas to liquid, freezing involves a change from liquid to solid while deposition involves the settling of mobile particles at a place. All these processes involve a decrease in energy of particles.
On the other hand, sublimation is a direct change from solid to gas, melting involves a change from solid to liquid while evaporation involves a change from liquid to gas. All these processes occur when energy is added to the particles in a system.
The energy that was lost due to air resistance while she was bouncing is determined as 3,360 J.
<h3>Conservation of energy</h3>
The amount of energy lost due to air resistance while she was bouncing is determined from the principle of conservation of energy.
ΔE = P.E - Ux
ΔE = mgh - ¹/₂kx²
ΔE = (50)(9.8)(16) - ¹/₂(35)(16)²
ΔE = 3,360 J
Thus, the energy that was lost due to air resistance while she was bouncing is determined as 3,360 J.
Learn more about energy here: brainly.com/question/13881533
#SPJ1
Answer:
160 m
Explanation:
distance covered in 1 s = 8 m
therefore, distance covered in 20 s = 8 * 20 m = 160 m
Answer:
Explanation:
The distance of a fringe from centre is proportional to wavelength of light
and inversely proportional to separation of slits. The expression for distance x is given by
x = nλ D / d
where λ is wave length , D is screen distance and d is slit separation.
So first option only is correct because
1 ) the wavelength of blue light is less than that of red
2) Intensity of light does not affect distance of fringe from the centre.
3.
Diffraction symbolises bending of light around sharp edges like slits or boundaries of opaque objects etc.Due to this reason , we do not observe sharp boundary of shadow of an object. Instead around the boundary of shadow, we observe bands of bright and dark color which are also called fringes.
The phenomena of diffraction is explained by wave theory of light.