Explanation:
It is given that,
Mass of the rim of wheel, m₁ = 7 kg
Mass of one spoke, m₂ = 1.2 kg
Diameter of the wagon, d = 0.5 m
Radius of the wagon, r = 0.25 m
Let I is the the moment of inertia of the wagon wheel for rotation about its axis.
We know that the moment of inertia of the ring is given by :


The moment of inertia of the rod about one end is given by :

l = r


For 6 spokes, 
So, the net moment of inertia of the wagon is :


So, the moment of inertia of the wagon wheel for rotation about its axis is
. Hence, this is the required solution.
What do we know that might help here ?
-- Temperature of a gas is actually the average kinetic energy of its molecules.
-- When something moves faster, its kinetic energy increases.
Knowing just these little factoids, we realize that as a gas gets hotter, the average speed of its molecules increases.
That's exactly what Graph #1 shows.
How about the other graphs ?
-- Graph #3 says that as the temperature goes up, the molecules' speed DEcreases. That can't be right.
-- Graph #4 says that as the temperature goes up, the molecules' speed doesn't change at all. That can't be right.
-- Graph #2 says that after the gas reaches some temperature and you heat it hotter than that, the speed of the molecules starts going DOWN. That can't be right.
--
Answer:
Material's density
Explanation:
Seismic waves travel at different rates of speed based on a material's density. Hopefully, you understand that the Earth has three main layers: the crust, mantle, and core. Earthquake waves move faster through solids.
It’s because flourecent lights operate at higher temperatures than incadecent lights.
The total momentum of the system has to be conserved to satisfy the principle of conservation of momentum. Before the ball hits the bottle, the momentum of the system is 0.4 x 18 = 7.2 kg m/s
The momentum of the bottle after being hit is 0.2 x 25 = 5 kg m/s
So the momentum of the ball now is 7.2 - 5 = 2.2 kg m/s
Hence its velocity is 2.2/0.4 = 5.5 m/s