1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natalija [7]
2 years ago
11

what equastion do you use to solve Riders in a carnival ride stand with their backs against the wall of a circular room of diame

ter 5.0 m. The room is spinning horizontally about an axis through its center at a rate of 60 rev/min when the floor drops so that it no longer provides any support for the riders. What is the minimum coefficient of static friction between the wall and the rider required so that the rider does not slide down the wall?
Physics
1 answer:
Hitman42 [59]2 years ago
5 0

Answer:

μsmín = 0.1

Explanation:

  • There are three external forces acting on the riders, two in the vertical direction that oppose each other, the force due to gravity (which we call weight) and the friction force.
  • This friction force has a maximum value, that can be written as follows:

       F_{frmax} = \mu_{s} *F_{n} (1)

       where  μs is the coefficient of static friction, and Fn is the normal force,

       perpendicular to the wall and aiming to the center of rotation.

  • This force is the only force acting in the horizontal direction, but, at the same time, is the force that keeps the riders rotating, which is the centripetal force.
  • This force has the following general expression:

       F_{c} =  m* \omega^{2} * r (2)

       where ω is the angular velocity of the riders, and r the distance to the

      center of rotation (the  radius of the circle), and m the mass of the

      riders.

      Since Fc is actually Fn, we can replace the right side of (2) in (1), as

      follows:

     F_{frmax} = m* \mu_{s} * \omega^{2} * r (3)

  • When the riders are on the verge of sliding down, this force must be equal to the weight Fg, so we can write the following equation:

       m* g = m* \mu_{smin} * \omega^{2} * r (4)

  • (The coefficient of static friction is the minimum possible, due to any value less than it would cause the riders to slide down)
  • Cancelling the masses on both sides of (4), we get:

       g = \mu_{smin} * \omega^{2} * r (5)

  • Prior to solve (5) we need to convert ω from rev/min to rad/sec, as follows:

      60 rev/min * \frac{2*\pi rad}{1 rev} *\frac{1min}{60 sec} =6.28 rad/sec (6)

  • Replacing by the givens in (5), we can solve for μsmín, as follows:

       \mu_{smin} = \frac{g}{\omega^{2} *r}  = \frac{9.8m/s2}{(6.28rad/sec)^{2} *2.5 m} =0.1 (7)

You might be interested in
An electron is moving east in a uniform electric field of 1.55 N/C directed to the west. At point A, the velocity of the electro
valkas [14]

Answer:

Final velocity of electron, v=6.45\times 10^5\ m/s    

Explanation:

It is given that,

Electric field, E = 1.55 N/C

Initial velocity at point A, u=4.52\times 10^5\ m/s

We need to find the speed of the electron when it reaches point B which is a distance of 0.395 m east of point A. It can be calculated using third equation of motion as :

v^2=u^2+2as........(1)

a is the acceleration, a=\dfrac{F}{m}

We know that electric force, F = qE

a=\dfrac{qE}{m}

Use above equation in equation (1) as:

v^2=u^2+\dfrac{2qEs}{m}

v^2=(4.52\times 10^5\ m/s)^2+2\times \dfrac{1.6\times 10^{-19}\ C\times 1.55\ N/C}{9.1\times 10^{-31}\ kg}\times 0.395\ m

v = 647302.09 m/s

or

v=6.45\times 10^5\ m/s

So, the final velocity of the electron when it reaches point B is 6.45\times 10^5\ m/s. Hence, this is the required solution.

3 0
3 years ago
Air rushing against an airplane is an example of _____friction.
slava [35]
The word "static" would be known to be friction as air rushing against an airplane
6 0
3 years ago
Someone please help me
schepotkina [342]
The answer is oil and water. If you want I could give you the reason too
5 0
2 years ago
Read 2 more answers
Okay! Last question was a warm-up question. And now to get your brain thinking some more, how about another one?:
den301095 [7]
The correct answer is a fishhook
5 0
2 years ago
How are domains arranged in materials that are magnetic and in ones that are not
Valentin [98]

Answer:

In most materials, atoms are arranged in such a way that the magnetic orientation of one electron cancels out the orientation of another

8 0
3 years ago
Other questions:
  • An element
    14·1 answer
  • If object and fluid are same density what will happen
    9·1 answer
  • When a 0.1-kilogram pendulum bob reaches the top of its swing, how much kinetic energy does it have?
    11·1 answer
  • Clouds absorb outgoing radiation emitted by earth and reradiate a portion of it back to the surface during _____.
    11·1 answer
  • A student is standing in an elevator that is
    13·1 answer
  • What wave property is shown
    5·2 answers
  • You drive on Interstate 10 from San Antonio to Houston, half the time at 51 km/h and the other half at 71 km/h. On the way back
    7·1 answer
  • A 6.0x10-2kg hollow racquetball with an initial speed of 18.6 m/s collides with a backboard. It rebounds with a speed of 4.6 m/s
    13·1 answer
  • Distinguish between a perceptual filter and a psychological set
    8·1 answer
  • Can someone answer all three of theses plzzzzzzzzzzz
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!