Four regions of the electromagnetic spectrum that astronomers use when observing objects in the space are the following enumerated answers.
1. First is Ultraviolet
2. Next is Infrared
3. Then the radio
4. Lastly the Visible lights.
These are the answers to the problem.
Answer:
57 %
Explanation:
input power = 16.4 kW = 16.4 x 10^3 W = 16400 W
Water pumped per second = 67 L/s
Mass of water pumped per second, m = Volume of water pumped epr second x density of water
m = 67 x 10^-3 x 1000 = 67 kg/s
height raised, h = 14 m
Output Power = m x g x h / t = 67 x 10 x 14 = 9380 W
efficiency = output power / input power = 9380 / 16400 = 0.57
% efficiency = 57 %
thus, the efficiency of the pump is 57 %.
Explanation:
Given the conditions A,B and C when the pendulum is released, at point A the initial velocity of the pendulum is zero(0), the potential energy stored is maximum(P.E= max),
the conditions can be summarized bellow
point A
initial velocity= 0
final velocity=0
P.E= Max
K.E= 0
point B
initial velocity= maximum
final velocity=maximum
P.E=K.E
point C
initial velocity= min
final velocity=min
P.E= 0
K.E= max
Answer:
The answer to your question is : 521.8 m
Explanation:
Data:
Different heights
Time first object (tfo) = 10.7 s
Time second object (tso)= 14.8 s
Initial speed of both objects(vo) = 0 m/s
a = 9.81 m/s²
Formula:
h = vot + 1/2 (a)(t)² but vo = 0 so, h = 1/2 (a)(t)²
Then, height fo h = 1/2 (9.81)(10.7)² = 561.6 m
height so h = 1/2(9,81)(14.8)² = 1074.4 m
Difference in their heights = 1074.4 m - 561.6 m = 521.8 m
The answer is B. Domain
When the atoms point to the same direction and aligned with one another, It will form a magnetic material in which magnetization is in a uniform direction
This alignment usually happens stimunaleously due to exchange interaction that caused by a response to an external field.