Answer: The final temperature is 470K
Explanation: Using the relation;
Q= ΔU +W
Given, n = 2mol
Initial temperature T1= 345K
Heat =Q= 2250J
Workdone=W=-870J(work is done on gas)
T2 =Final temperature =?
ΔU =3/2nR(T2-T1)
ΔU=3/2 × 2 ×8.314 (T2 - 345)
ΔU=24.942(T2-345)
Therefore Q = 24.942(T2-345)+ (-870)
2250=24.942(T2-345)+ (-870)
125.09=(T2-345)
T2 =470K
Therfore the final temperature is 470K
Answer: Increasing the frequency does not increase the wavelength. They are inversely related.
Explanation:
As wavelength increases, frequency decreases. If you look at a transverse wave and it has a long wavelength, there only a few waves produce. Which means there is less frequency produced. So as wavelength increases, frequency decreases. The other way around can work to. As frequency increases, wavelength decreases. They are inversely related.
Answer:
The object will travel at the speed of 16 m/s.
Explanation:
Given
To determine
How fast is the object traveling?
<u>Important Tip:</u>
The product of the mass and velocity of an object — momentum.
Using the formula

where
Thus, in order to determine the speed of the object, all we need to do is to substitute p = 64 and m = 4 in the formula


switch the equation

divide both sides by 4

simplify
m/s
Therefore, the object will travel at the speed of 16 m/s.
Answer:
A solenoid is a device comprised of a coil of wire, the housing and a moveable plunger (armature). When an electrical current is introduced, a magnetic field forms around the coil which draws the plunger in. More simply, a solenoid converts electrical energy into mechanical work.
Explanation:
The coil is made of many turns of tightly wound copper wire. When an electrical current flows through this wire, a strong magnetic field/flux is created.
The housing, usually made of iron or steel, surrounds the coil concentrating the magnetic field generated by the coil.
The plunger is attracted to the stop through the concentration of the magnetic field providing the mechanical force to do work.
Answer:
2
Explanation:
İf system ideal ( no frictional force )
Fnet=m.a
20=10.a
a=2m/s2