So, If the silica cyliner of the radiant wall heater is rated at 1.5 kw its temperature when operating is 1025.3 K
To estimate the operating temperature of the radiant wall heater, we need to use the equation for power radiated by the radiant wall heater.
<h3>Power radiated by the radiant wall heater</h3>
The power radiated by the radiant wall heater is given by P = εσAT⁴ where
- ε = emissivity = 1 (since we are not given),
- σ = Stefan-Boltzmann constant = 6 × 10⁻⁸ W/m²-K⁴,
- A = surface area of cylindrical wall heater = 2πrh where
- r = radius of wall heater = 6 mm = 6 × 10⁻³ m and
- h = length of heater = 0.6 m, and
- T = temperature of heater
Since P = εσAT⁴
P = εσ(2πrh)T⁴
Making T subject of the formula, we have
<h3>Temperature of heater</h3>
T = ⁴√[P/εσ(2πrh)]
Since P = 1.5 kW = 1.5 × 10³ W
Substituting the values of the variables into the equation, we have
T = ⁴√[P/εσ(2πrh)]
T = ⁴√[1.5 × 10³ W/(1 × 6 × 10⁻⁸ W/m²-K⁴ × 2π × 6 × 10⁻³ m × 0.6 m)]
T = ⁴√[1.5 × 10³ W/(43.2π × 10⁻¹¹ W/K⁴)]
T = ⁴√[1.5 × 10³ W/135.72 × 10⁻¹¹ W/K⁴)]
T = ⁴√[0.01105 × 10¹⁴ K⁴)]
T = ⁴√[1.105 × 10¹² K⁴)]
T = 1.0253 × 10³ K
T = 1025.3 K
So, If the silica cylinder of the radiant wall heater is rated at 1.5 kw its temperature when operating is 1025.3 K
Learn more about temperature of radiant wall heater here:
brainly.com/question/14548124
Answer:
If a rose bush is placed in direct sunlight then it will grow taller than a rose bush placed in indirect sunlight.
Explanation:
The velocity of the combination of Jackie and the bicycle is 3.328 m/s.
Explanation:
From the given data the constant kinetic energy is 3.6 J. The mass of combination is 0.65 kg. To find the velocity of the combination of Jackie and the bicycle the formula is
KE = 0.5 x mv2.
To find velocity,
V2=ke/(0.5×m)
V=
v= 3.6/(0.5×0.65)
=
v= 3.328 m/s
Hence, the velocity of the combination of Jackie and the bicycle is 3.328m/s.
Answer:
The objects kinetic energy increases as it falls from some height.
Answer:

Explanation:
From the question we are told that:
Period 
Trial 1
Spring constant 
Period 
Mass 
Trial 2
Period 
Generally the equation for Spring Constant is mathematically given by
\mu=\frac{4 \pi^2 M}{T^2}
Since

Therefore



