Answer:
ΔS° = 180.5 J/mol.K
Explanation:
Let's consider the following reaction.
4 NH₃(g) + 5 O₂(g) → 4 NO(g) + 6 H₂O(g)
The standard molar entropy of the reaction (ΔS°) can be calculated using the following expression.
ΔS° = ∑np × S°p - ∑nr × S°r
where,
ni are the moles of reactants and products
S°i are the standard molar entropies of reactants and products
ΔS° = 4 mol × S°(NO(g)) + 6 × S°(H₂O(g)) - 4 mol × S°(NH₃(g)) - 5 mol × S°(O₂(g))
ΔS° = 4 mol × 210.8 J/K.mol + 6 × 188.8 j/K.mol - 4 mol × 192.5 J/K.mol - 5 mol × 205.1 J/K.mol
ΔS° = 180.5 J/K
This is the change in the entropy per mole of reaction.
<span>Heat from the can is making the water molecule move faster, which melts the ice.</span>
The energy change if 84.0 g of CaO react with excess water is 98KJ of heat is released.
calculation
heat = number of moles x delta H
delta H = - 65.2 Kj/mol
first find the number of moles of CaO reacted
moles = mass/molar mass
the molar mass of CaO = 40 + 16= 56 g/mol
mass = 84 g
moles therefore = 84 g/56 g/mol =1.5 moles
Heat is therefore = 1.5 moles x -65.2 = - 97.8 Kj = -98 Kj
since sign is negative the energy is released
Answer:
2) 0.4 mol
Explanation:
Step 1: Given data
- Volume of the solution (V): 500 mL
- Molar concentration of the solution (M): 0.8 M = 0.8 mol/L
Step 2: Convert "V" to L
We will use the conversion factor 1 L = 1000 mL.
500 mL × 1 L/1000 mL = 0.500 L
Step 3: Calculate the moles of KBr (solute)
The molarity is the quotient between the moles of solute (n) and the liters of solution.
M = n/V
n = M × V
n = 0.8 mol/L × 0.500 L = 0.4 mol
Answer:
a. 4 sig figs
b. 3 sig figs
c. 2 sig figs