Answer:
The charge on a neutron=1+-/neutral
It has a mass 1
The charge on electron is 1-/negative
It's mass is 1/1840
The charge on a proton is 1+
It has a mass 1 too.
Explanation:
Answer : The final volume of gas will be, 26.3 mL
Explanation :
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,

where,
= initial pressure of gas = 0.974 atm
= final pressure of gas = 0.993 atm
= initial volume of gas = 27.5 mL
= final volume of gas = ?
= initial temperature of gas = 
= final temperature of gas = 
Now put all the given values in the above equation, we get:


Therefore, the final volume of gas will be, 26.3 mL
15 grams of NH3 can be dissolved
<h3>Further explanation</h3>
Given
50 grams of water at 50°C
Required
mass of NH3
Solution
Solubility is the maximum amount of a substance that can dissolve in some solvents. Factors that affect solubility
- 1. Temperature:
- 2. Surface area:
- 3. Solvent type:
- 4. Stirring process:
We can use solubility chart (attached) to determine the solubility of NH3 at 50°C
From the graph, we can see that the solubility of NH3 in 100 g of water at 50 C is 30 g
So that the solubility in 50 grams of water is:
= 50/100 x 30
= 15 grams
Answer:
90%
Explanation:
Percentage yield = ?
Theoretical yield = 50g
Actual yield = 45g
To calculate the percentage yield of a compound, we'll have to use the formula of percentage yield which is the ratio between the actual yield to theoretical multiplied by 100
Percentage yield = (actual yield / theoretical yield) × 100
Percentage yield = (45 / 50) × 100
Percentage yield = 0.9 × 100
Percentage yield = 90%
The percentage yield of the substance is 90%
The balanced chemical reaction:
C3H8 + 5O2 = 3CO2 + 4H2O
We are given the amount of the carbon dioxide to be produced. This will be the starting point of our calculations.
<span>43.62 L CO2 ( 1 mol CO2 / 22.4 L CO2 ) (5 mol O2 / 3 mol CO2 ) (
22.4 L O2 / 1 mol O2) = 72.7 L O2</span>