Answer:
0.886 J/g.°C
Explanation:
Step 1: Calculate the heat absorbed by the water
We will use the following expression
Q = c × m × ΔT
where,
- c: specific heat capacity
- ΔT: change in the temperature
Q(water) = c(water) × m(water) × ΔT(water)
Q(water) = 4.184 J/g.°C × 50.0 g × (34.4 °C - 25.36 °C) = 1.89 × 10³ J
According to the law of conservation of energy, the sum of the energy lost by the solid and the energy absorbed by the water is zero.
Q(water) + Q(solid) = 0
Q(solid) = -Q(water) = -1.89 × 10³ J
Step 2: Calculate the specific heat capacity of the solid
We will use the following expression.
Q(solid) = c(solid) × m(solid) × ΔT(solid)
c(solid) = Q(solid) / m(solid) × ΔT(solid)
c(solid) = (-1.89 × 10³ J) / 32.53 g × (34.4 °C - 100. °C) = 0.886 J/g.°C
<u>Answer:</u> The volume of water required is 398 mL
<u>Explanation:</u>
To calculate the molarity of solution, we use the equation:

We are given:
Mass of solute (manganese (II) nitrate tetrahydrate) = 16 g
Molar mass of manganese (II) nitrate tetrahydrate = 251 g/mol
Molarity of solution = 0.16 M
Putting values in above equation, we get:

Hence, the volume of water required is 398 mL
<span>2.44 × 10–2 m by 1.4 × 10–3 m by 8.4 × 10–3 m
</span>
2.9 x 10-7 m3
Answer:
67.93 kg.
Explanation:
See the attached pictures for detailed explanation.
<span>The answer is anions. Cations are positively-charged ions (in this case K+) while anions are negatively-charged ions (in this case Cl-). The ions attract each other through electrostatic charges and arrange themselves in an ordered fashion to form a lattice</span>