Answer:
3.25×10²⁴ molecules.
Explanation:
From the question given above, the following data were obtained:
Number of mole of CO₂ = 5.4 moles
Number of molecules of CO₂ =?
The number of molecules of CO₂ in 5.4 moles can be obtained as follow:
From Avogadro's hypothesis,
1 mole of CO₂ = 6.02×10²³ molecules
Therefore,
5.4 moles of CO₂ = 5.4 × 6.02×10²³
5.4 moles of CO₂ = 3.25×10²⁴ molecules
Thus, 5.4 moles of CO₂ contains 3.25×10²⁴ molecules.
Answer:
The answer to this question is given below in the explanation section.
Explanation:
The Bohr model depicts an atom as a small, positively charged nucleus surrounded by electrons.These electrons travel in circular orbit around the nucleus similar in structure to the solar system,except electrostatic forces rather than gravity provide attraction.Electron orbit around the nucleus resembles that of planets around the sun in the solar system.
The Bohr model was an improvement on the earlier cubic model(1902),the plum pudding model(1904) the saturnine model (1904) the rutherford model (1911) since the Bohr model is a quantum physics based modification of the Rutherford may source combine the two:the Rutherford-Bohr model
Although revolutionary at the time,the Bohr model is a relatively primitive model of the hydrogen atom compared to the valence shell atom.As an initial hypothesis it was derived as a first order approximation to describe the hydrogen atom.Due to its simplicity and correct results for selected systems.
In 913 Bohr suggested that electrons could only have certain classical motions:
- Electrons in atoms orbit the nucleus.
- The electrons can only orbit stably,without radiating in certain orbits at a certain discrete set of distances from the nucleus.These orbit are associated with definite energies and are also called energy shells or energy levels.
- Electrons can only gives or lose energy by jumping from one allowed orbit to another,absorbing or emitting electromagnetic radiation with a frequency (v) determined by the energy difference of the levels according to the plank relation.
Answer: I dont really know
Explanation:
D water expands when it freezes
Answer:

Explanation:
Hello,
Considering the ideal equation of state:

The moles are defined in terms of mass as follows:

Whereas
the gas' molar mass, thus:

Now, since the density is defined as the quotient between the mass and the volume, we get:

Solving for
:

Thus, the result is given by:
![density=\frac{(1atm)(44g/mol)}{[0.082atm*L/(mol*K)]*298.15K} \\density=1.8g/L=1.8x10^{-3}g/mL](https://tex.z-dn.net/?f=density%3D%5Cfrac%7B%281atm%29%2844g%2Fmol%29%7D%7B%5B0.082atm%2AL%2F%28mol%2AK%29%5D%2A298.15K%7D%20%5C%5Cdensity%3D1.8g%2FL%3D1.8x10%5E%7B-3%7Dg%2FmL)
Best regards.