Answer:
the frequency of photons 
Explanation:
Given: first ionization energy of 1000 kJ/mol.
No. of moles of sulfur = 1 mole

We know that plank's constant

Let the frequency of photons be ν
Also we know that ΔE = hν
this implies ν = ΔE/h


Hence, the frequency of photons 
Answer:
9.35g
Explanation:
The molarity equation establishes that:

So, we have information about molarity (2M) and volume (80 ml=0.08 l), with that, we can find the moles of solute:


The mathematical equation that establishes the relationship between molar weight, mass and moles is:


We have MW (58.44g/mole) and n (0.16 mol), and we need to find m (grams of salt needed) to solve the problem:

Answer:
ScCl₂
General Formulas and Concepts:
<u>Chemistry</u>
- Reading a Periodic Table
- Reaction Prediction
- Determining Chemical Compounds
Explanation:
<u>Step 1: Define</u>
Scandium (II)
Cl
<u>Step 2: Determine Charges</u>
Sc²⁺
Cl⁻
<u>Step 3: Predict Compound</u>
<em>We need to balance out the charges so the overall charge is 0.</em>
ScCl₂
<u>Step 4: Reaction</u>
RxN: Sc²⁺ + Cl₂ → ScCl₂
Answer:
choose the one with the least amount of electrons ex:iron
Explanation:
<span>Ionic compounds dissociate</span>